通过先验方法挖掘分类规则

S. M. Monzurur Rahman, M.R.A. Kotwal, Xinghuo Yu
{"title":"通过先验方法挖掘分类规则","authors":"S. M. Monzurur Rahman, M.R.A. Kotwal, Xinghuo Yu","doi":"10.1109/ICCITECHN.2010.5723889","DOIUrl":null,"url":null,"abstract":"Classification rules are the interest of most data miners to summarize the discrimination ability of classes present in data. A classification rule is an assertion, which discriminates the concepts of one class from other classes. The most classification rules mining algorithm aims to providing a single solution where multiple solutions exist. Moreover, it does not guarantee the optimal solution and user has not any control over the classification error rate. In this paper, we addressed these problems inherent in mostly used classification algorithms. A solution has been proposed to solve these problems and it has been tested with experimental data.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining classification rules via an apriori approach\",\"authors\":\"S. M. Monzurur Rahman, M.R.A. Kotwal, Xinghuo Yu\",\"doi\":\"10.1109/ICCITECHN.2010.5723889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification rules are the interest of most data miners to summarize the discrimination ability of classes present in data. A classification rule is an assertion, which discriminates the concepts of one class from other classes. The most classification rules mining algorithm aims to providing a single solution where multiple solutions exist. Moreover, it does not guarantee the optimal solution and user has not any control over the classification error rate. In this paper, we addressed these problems inherent in mostly used classification algorithms. A solution has been proposed to solve these problems and it has been tested with experimental data.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分类规则是大多数数据挖掘者的兴趣所在,用于总结数据中存在的类别的识别能力。分类规则是一种断言,它将一个类的概念与其他类区分开来。大多数分类规则挖掘算法的目标是在存在多个解的情况下提供单个解。此外,它不能保证最优解,用户无法控制分类错误率。在本文中,我们解决了大多数常用分类算法中固有的这些问题。针对这些问题提出了一种解决方案,并用实验数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining classification rules via an apriori approach
Classification rules are the interest of most data miners to summarize the discrimination ability of classes present in data. A classification rule is an assertion, which discriminates the concepts of one class from other classes. The most classification rules mining algorithm aims to providing a single solution where multiple solutions exist. Moreover, it does not guarantee the optimal solution and user has not any control over the classification error rate. In this paper, we addressed these problems inherent in mostly used classification algorithms. A solution has been proposed to solve these problems and it has been tested with experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信