从12导联心电图推导ST敏感贴片导联系统的系数

M. Jennings, A. Rababah, Daniel Güldenring, J. Mclaughlin, D. Finlay
{"title":"从12导联心电图推导ST敏感贴片导联系统的系数","authors":"M. Jennings, A. Rababah, Daniel Güldenring, J. Mclaughlin, D. Finlay","doi":"10.23919/cinc53138.2021.9662649","DOIUrl":null,"url":null,"abstract":"Background: There are limited datasets available to facilitate the evaluation of patch-based lead systems, so the leads must be derived from existing data, mainly the 12-lead ECG. We have previously introduced a short spaced lead (SSL) system consisting of two leads with the largest ST segment changes during ischaemic-type episodes. In this study, we aim to evaluate the derivation of this patch-based lead system from the 12-lead ECG. Method: Thoracic body surface potential maps (BSPM) were recorded from $n=734$ patients. Using Laplacian interpolation, each recording was expanded to the 352-node Dalhousie torso. The eight independent channels of the 12-lead ECG were extracted (I, II, V1-V6) with the two leads of the SSL patch Coefficients were derived using linear regression from the 12-lead ECG to the SSL patch. Results: The median Pearson correlation coefficients (CC) and root mean square error (RMSE) for each lead were calculated as follows (CC/RMSE): $0.986/74.3 \\mu V$ (ST monitoring lead); $0.976/65.3 \\mu V$ (spatially orthogonal lead). Conclusion: We have developed coefficients that allow the derivation of a patch-based lead system from the 12-lead ECG. Given the high correlation, it is possible to generate short spaced lead systems from existing diagnostic lead systems, however, amplitude errors are introduced in the process.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coefficients for the Derivation of an ST Sensitive Patch Based Lead System from the 12 Lead Electrocardiogram\",\"authors\":\"M. Jennings, A. Rababah, Daniel Güldenring, J. Mclaughlin, D. Finlay\",\"doi\":\"10.23919/cinc53138.2021.9662649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: There are limited datasets available to facilitate the evaluation of patch-based lead systems, so the leads must be derived from existing data, mainly the 12-lead ECG. We have previously introduced a short spaced lead (SSL) system consisting of two leads with the largest ST segment changes during ischaemic-type episodes. In this study, we aim to evaluate the derivation of this patch-based lead system from the 12-lead ECG. Method: Thoracic body surface potential maps (BSPM) were recorded from $n=734$ patients. Using Laplacian interpolation, each recording was expanded to the 352-node Dalhousie torso. The eight independent channels of the 12-lead ECG were extracted (I, II, V1-V6) with the two leads of the SSL patch Coefficients were derived using linear regression from the 12-lead ECG to the SSL patch. Results: The median Pearson correlation coefficients (CC) and root mean square error (RMSE) for each lead were calculated as follows (CC/RMSE): $0.986/74.3 \\\\mu V$ (ST monitoring lead); $0.976/65.3 \\\\mu V$ (spatially orthogonal lead). Conclusion: We have developed coefficients that allow the derivation of a patch-based lead system from the 12-lead ECG. Given the high correlation, it is possible to generate short spaced lead systems from existing diagnostic lead systems, however, amplitude errors are introduced in the process.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:可用于评估贴片导联系统的数据集有限,因此导联必须来自现有数据,主要是12导联心电图。我们之前介绍过一种短间隔导联(SSL)系统,该系统由两条导联组成,在缺血型发作期间ST段变化最大。在这项研究中,我们的目的是评估这种基于贴片的导联系统从12导联心电图的推导。方法:记录734例患者的胸椎体表电位图(BSPM)。使用拉普拉斯插值,每个记录被扩展到352节点的达尔豪西躯干。提取了12导联心电图的8个独立通道(I、II、V1-V6),并利用SSL贴片的两导联提取了12导联心电图与SSL贴片的线性回归系数。结果:各导联的中位Pearson相关系数(CC)和均方根误差(RMSE)计算如下(CC/RMSE): $0.986/74.3 \mu V$ (ST监测导联);$0.976/65.3 \mu V$(空间正交引线)。结论:我们已经开发了系数,允许从12导联心电图中推导出基于贴片的导联系统。鉴于高相关性,可以从现有的诊断导联系统中生成短间隔导联系统,然而,在此过程中引入幅度误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coefficients for the Derivation of an ST Sensitive Patch Based Lead System from the 12 Lead Electrocardiogram
Background: There are limited datasets available to facilitate the evaluation of patch-based lead systems, so the leads must be derived from existing data, mainly the 12-lead ECG. We have previously introduced a short spaced lead (SSL) system consisting of two leads with the largest ST segment changes during ischaemic-type episodes. In this study, we aim to evaluate the derivation of this patch-based lead system from the 12-lead ECG. Method: Thoracic body surface potential maps (BSPM) were recorded from $n=734$ patients. Using Laplacian interpolation, each recording was expanded to the 352-node Dalhousie torso. The eight independent channels of the 12-lead ECG were extracted (I, II, V1-V6) with the two leads of the SSL patch Coefficients were derived using linear regression from the 12-lead ECG to the SSL patch. Results: The median Pearson correlation coefficients (CC) and root mean square error (RMSE) for each lead were calculated as follows (CC/RMSE): $0.986/74.3 \mu V$ (ST monitoring lead); $0.976/65.3 \mu V$ (spatially orthogonal lead). Conclusion: We have developed coefficients that allow the derivation of a patch-based lead system from the 12-lead ECG. Given the high correlation, it is possible to generate short spaced lead systems from existing diagnostic lead systems, however, amplitude errors are introduced in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信