{"title":"(- 1,1)和广义Kac-Moody代数","authors":"K. Jayalakshmi","doi":"10.3923/AJA.2015.6.13","DOIUrl":null,"url":null,"abstract":"This study determines all third power-associative (-1, 1) algebras, whose commutator algebras are generalized Kac-Moody algebras.","PeriodicalId":228361,"journal":{"name":"Asian Journal of Algebra","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(-1, 1) and Generalized Kac-Moody Algebras\",\"authors\":\"K. Jayalakshmi\",\"doi\":\"10.3923/AJA.2015.6.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study determines all third power-associative (-1, 1) algebras, whose commutator algebras are generalized Kac-Moody algebras.\",\"PeriodicalId\":228361,\"journal\":{\"name\":\"Asian Journal of Algebra\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3923/AJA.2015.6.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3923/AJA.2015.6.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}