APC模型的简化平滑样条

G. Venter
{"title":"APC模型的简化平滑样条","authors":"G. Venter","doi":"10.2139/ssrn.3852449","DOIUrl":null,"url":null,"abstract":"Smoothing splines are splines fit including a roughness penalty. They can be used across groups of variables in regression models to produce more parsimonious models with improved accuracy. For APC (age-period-cohort) models, the variables in each direction can be numbered sequentially 1:N, which simplifies spline fitting. Further simplification is proposed using a different roughness penalty. Some key calculations then become closed-form, and numeric optimization for the degree of smoothing is simpler. Further, this allows the entire estimation to be done simply in MCMC for Bayesian and random-effects models, improving the estimation of the smoothing parameter and providing distributions of the parameters (or random effects) and the selection of the spline knots.","PeriodicalId":226815,"journal":{"name":"Philosophy & Methodology of Economics eJournal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Smoothing Splines for APC Models\",\"authors\":\"G. Venter\",\"doi\":\"10.2139/ssrn.3852449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smoothing splines are splines fit including a roughness penalty. They can be used across groups of variables in regression models to produce more parsimonious models with improved accuracy. For APC (age-period-cohort) models, the variables in each direction can be numbered sequentially 1:N, which simplifies spline fitting. Further simplification is proposed using a different roughness penalty. Some key calculations then become closed-form, and numeric optimization for the degree of smoothing is simpler. Further, this allows the entire estimation to be done simply in MCMC for Bayesian and random-effects models, improving the estimation of the smoothing parameter and providing distributions of the parameters (or random effects) and the selection of the spline knots.\",\"PeriodicalId\":226815,\"journal\":{\"name\":\"Philosophy & Methodology of Economics eJournal\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophy & Methodology of Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3852449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophy & Methodology of Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3852449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平滑样条是包含粗糙度惩罚的样条拟合。它们可以跨回归模型中的变量组使用,以生成更简洁的模型,并提高准确性。对于APC (age-period-cohort)模型,每个方向的变量可以按顺序编号为1:N,简化了样条拟合。进一步的简化建议使用不同的粗糙度惩罚。一些关键的计算变成了封闭形式,平滑度的数值优化就更简单了。此外,这使得整个估计可以在MCMC中简单地完成贝叶斯和随机效应模型,改进平滑参数的估计,提供参数的分布(或随机效应)和样条结点的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Smoothing Splines for APC Models
Smoothing splines are splines fit including a roughness penalty. They can be used across groups of variables in regression models to produce more parsimonious models with improved accuracy. For APC (age-period-cohort) models, the variables in each direction can be numbered sequentially 1:N, which simplifies spline fitting. Further simplification is proposed using a different roughness penalty. Some key calculations then become closed-form, and numeric optimization for the degree of smoothing is simpler. Further, this allows the entire estimation to be done simply in MCMC for Bayesian and random-effects models, improving the estimation of the smoothing parameter and providing distributions of the parameters (or random effects) and the selection of the spline knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信