结构化检验统计的精确配对置换检验

Ran Zmigrod, Tim Vieira, Ryan Cotterell
{"title":"结构化检验统计的精确配对置换检验","authors":"Ran Zmigrod, Tim Vieira, Ryan Cotterell","doi":"10.48550/arXiv.2205.01416","DOIUrl":null,"url":null,"abstract":"Significance testing—especially the paired-permutation test—has played a vital role in developing NLP systems to provide confidence that the difference in performance between two systems (i.e., the test statistic) is not due to luck. However, practitioners rely on Monte Carlo approximation to perform this test due to a lack of a suitable exact algorithm. In this paper, we provide an efficient exact algorithm for the paired-permutation test for a family of structured test statistics. Our algorithm runs in \\mathcal{O}(G N (\\log GN )(\\log N)) time where N is the dataset size and G is the range of the test statistic. We found that our exact algorithm was 10x faster than the Monte Carlo approximation with 20000 samples on a common dataset","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exact Paired-Permutation Testing for Structured Test Statistics\",\"authors\":\"Ran Zmigrod, Tim Vieira, Ryan Cotterell\",\"doi\":\"10.48550/arXiv.2205.01416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance testing—especially the paired-permutation test—has played a vital role in developing NLP systems to provide confidence that the difference in performance between two systems (i.e., the test statistic) is not due to luck. However, practitioners rely on Monte Carlo approximation to perform this test due to a lack of a suitable exact algorithm. In this paper, we provide an efficient exact algorithm for the paired-permutation test for a family of structured test statistics. Our algorithm runs in \\\\mathcal{O}(G N (\\\\log GN )(\\\\log N)) time where N is the dataset size and G is the range of the test statistic. We found that our exact algorithm was 10x faster than the Monte Carlo approximation with 20000 samples on a common dataset\",\"PeriodicalId\":382084,\"journal\":{\"name\":\"North American Chapter of the Association for Computational Linguistics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Chapter of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.01416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

显著性测试——尤其是配对排列测试——在开发NLP系统中发挥了至关重要的作用,它提供了两个系统之间性能差异(即测试统计量)不是由于运气的信心。然而,由于缺乏合适的精确算法,从业者依赖蒙特卡罗近似来执行此测试。本文给出了一类结构化检验统计量的成对置换检验的一种高效精确算法。我们的算法运行在\mathcal{O}(GN (\log GN)(\log N)))时间内,其中N是数据集大小,G是测试统计量的范围。我们发现我们的精确算法比在一个公共数据集上使用20000个样本的蒙特卡罗近似快10倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Paired-Permutation Testing for Structured Test Statistics
Significance testing—especially the paired-permutation test—has played a vital role in developing NLP systems to provide confidence that the difference in performance between two systems (i.e., the test statistic) is not due to luck. However, practitioners rely on Monte Carlo approximation to perform this test due to a lack of a suitable exact algorithm. In this paper, we provide an efficient exact algorithm for the paired-permutation test for a family of structured test statistics. Our algorithm runs in \mathcal{O}(G N (\log GN )(\log N)) time where N is the dataset size and G is the range of the test statistic. We found that our exact algorithm was 10x faster than the Monte Carlo approximation with 20000 samples on a common dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信