Ising/Potts模型并不适合分割任务

R. Morris, X. Descombes, J. Zerubia
{"title":"Ising/Potts模型并不适合分割任务","authors":"R. Morris, X. Descombes, J. Zerubia","doi":"10.1109/DSPWS.1996.555511","DOIUrl":null,"url":null,"abstract":"The Ising and Potts models have been used since the earliest work on Markov random fields (MRF) based image segmentation as the underlying model for the region labels, and continue to be used for this task. However, advances in Markov chain Monte Carlo techniques have highlighted the shortcomings of these models as models of region labels. We present a demonstration of why these models are unsuitable for segmentation. We hope this will help motivate the search for better models.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"The Ising/Potts model is not well suited to segmentation tasks\",\"authors\":\"R. Morris, X. Descombes, J. Zerubia\",\"doi\":\"10.1109/DSPWS.1996.555511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ising and Potts models have been used since the earliest work on Markov random fields (MRF) based image segmentation as the underlying model for the region labels, and continue to be used for this task. However, advances in Markov chain Monte Carlo techniques have highlighted the shortcomings of these models as models of region labels. We present a demonstration of why these models are unsuitable for segmentation. We hope this will help motivate the search for better models.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

Ising和Potts模型从最早的基于马尔可夫随机场(MRF)的图像分割工作开始就被用作区域标签的基础模型,并继续用于这项任务。然而,马尔可夫链蒙特卡罗技术的进步凸显了这些模型作为区域标签模型的缺点。我们展示了为什么这些模型不适合分割。我们希望这将有助于激励人们寻找更好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ising/Potts model is not well suited to segmentation tasks
The Ising and Potts models have been used since the earliest work on Markov random fields (MRF) based image segmentation as the underlying model for the region labels, and continue to be used for this task. However, advances in Markov chain Monte Carlo techniques have highlighted the shortcomings of these models as models of region labels. We present a demonstration of why these models are unsuitable for segmentation. We hope this will help motivate the search for better models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信