基于D-S证据理论的多源导航传感器后端信息融合技术

Senzao Liu, Kunpeng Li, J. Mi, Rui Huang, Tong Guo
{"title":"基于D-S证据理论的多源导航传感器后端信息融合技术","authors":"Senzao Liu, Kunpeng Li, J. Mi, Rui Huang, Tong Guo","doi":"10.1109/ISSSR58837.2023.00037","DOIUrl":null,"url":null,"abstract":"Multi-source navigation sensors can provide high-precision navigation solutions. To achieve back-end information fusion, this paper presents a fault detection algorithm and an information fusion algorithm. The fault detection algorithm is designed to detect anomalies in multisource navigation sensor data, while the information fusion algorithm is used to integrate data from multiple sensors for obtaining more accurate and reliable navigation information. These two algorithms are based on the D-S evidence theory and Murphy’s improved method, which effectively detect and judge abnormal data and handle conflicts and uncertainties among multiple sources of information, thereby outputting more reliable navigation information. By applying the algorithms to actual flight data, this study demonstrates their effectiveness in abnormal situations, such as abnormal inertial attitude angle, constant difference between inertial pitch angle and heading pitch angle, and sudden changes in GPS output position information.","PeriodicalId":185173,"journal":{"name":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-source Navigation Sensor Backend Information Fusion Technology Based on D-S Evidence Theory\",\"authors\":\"Senzao Liu, Kunpeng Li, J. Mi, Rui Huang, Tong Guo\",\"doi\":\"10.1109/ISSSR58837.2023.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-source navigation sensors can provide high-precision navigation solutions. To achieve back-end information fusion, this paper presents a fault detection algorithm and an information fusion algorithm. The fault detection algorithm is designed to detect anomalies in multisource navigation sensor data, while the information fusion algorithm is used to integrate data from multiple sensors for obtaining more accurate and reliable navigation information. These two algorithms are based on the D-S evidence theory and Murphy’s improved method, which effectively detect and judge abnormal data and handle conflicts and uncertainties among multiple sources of information, thereby outputting more reliable navigation information. By applying the algorithms to actual flight data, this study demonstrates their effectiveness in abnormal situations, such as abnormal inertial attitude angle, constant difference between inertial pitch angle and heading pitch angle, and sudden changes in GPS output position information.\",\"PeriodicalId\":185173,\"journal\":{\"name\":\"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSR58837.2023.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSR58837.2023.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多源导航传感器可以提供高精度的导航解决方案。为了实现后端信息融合,本文提出了一种故障检测算法和一种信息融合算法。故障检测算法旨在检测多源导航传感器数据中的异常,而信息融合算法用于整合多个传感器数据,以获得更准确可靠的导航信息。这两种算法基于D-S证据理论和Murphy改进方法,能够有效地检测和判断异常数据,处理多信息源之间的冲突和不确定性,从而输出更可靠的导航信息。将该算法应用于实际飞行数据,验证了该算法在惯性姿态角异常、惯性俯仰角与航向俯仰角恒定差、GPS输出位置信息突变等异常情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-source Navigation Sensor Backend Information Fusion Technology Based on D-S Evidence Theory
Multi-source navigation sensors can provide high-precision navigation solutions. To achieve back-end information fusion, this paper presents a fault detection algorithm and an information fusion algorithm. The fault detection algorithm is designed to detect anomalies in multisource navigation sensor data, while the information fusion algorithm is used to integrate data from multiple sensors for obtaining more accurate and reliable navigation information. These two algorithms are based on the D-S evidence theory and Murphy’s improved method, which effectively detect and judge abnormal data and handle conflicts and uncertainties among multiple sources of information, thereby outputting more reliable navigation information. By applying the algorithms to actual flight data, this study demonstrates their effectiveness in abnormal situations, such as abnormal inertial attitude angle, constant difference between inertial pitch angle and heading pitch angle, and sudden changes in GPS output position information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信