基于高保真模型的叶根摩擦非线性模态阻尼分析

Junjie Chen, C. Zang, Biao Zhou, E. Petrov
{"title":"基于高保真模型的叶根摩擦非线性模态阻尼分析","authors":"Junjie Chen, C. Zang, Biao Zhou, E. Petrov","doi":"10.1115/GT2018-76546","DOIUrl":null,"url":null,"abstract":"In this paper, a methodology is developed for analysis of modal damping in root joints of bladed discs using large finite element models and detailed description of friction contacts at contact interfaces of the joints. The methods allows the analysis of: (i) a single blade vibration and (ii) a bladed-disc assembly for any family of modes (lower and higher modes) calculating the modal damping factors for different levels of vibrations.\n Three-dimension solid finite element models are used in the calculations. The analysis is performed in time domain through the transient dynamics analysis. The methodology allows the use of widely available finite element packages and based on the direct calculation of the energy dissipated at root joints due to micro-slip over the multitude of contact elements modelling the surface-to-surface friction contact interactions.\n The numerical studies of the dependency of modal damping factors on the vibration amplitudes are performed for simplified and realistic bladed disc models for different blade mode shapes, engine-order excitation numbers and nodal diameter numbers using high-fidelity models.","PeriodicalId":347795,"journal":{"name":"Volume 7C: Structures and Dynamics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of Nonlinear Modal Damping due to Friction at Blade Roots Using High-Fidelity Modelling\",\"authors\":\"Junjie Chen, C. Zang, Biao Zhou, E. Petrov\",\"doi\":\"10.1115/GT2018-76546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a methodology is developed for analysis of modal damping in root joints of bladed discs using large finite element models and detailed description of friction contacts at contact interfaces of the joints. The methods allows the analysis of: (i) a single blade vibration and (ii) a bladed-disc assembly for any family of modes (lower and higher modes) calculating the modal damping factors for different levels of vibrations.\\n Three-dimension solid finite element models are used in the calculations. The analysis is performed in time domain through the transient dynamics analysis. The methodology allows the use of widely available finite element packages and based on the direct calculation of the energy dissipated at root joints due to micro-slip over the multitude of contact elements modelling the surface-to-surface friction contact interactions.\\n The numerical studies of the dependency of modal damping factors on the vibration amplitudes are performed for simplified and realistic bladed disc models for different blade mode shapes, engine-order excitation numbers and nodal diameter numbers using high-fidelity models.\",\"PeriodicalId\":347795,\"journal\":{\"name\":\"Volume 7C: Structures and Dynamics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7C: Structures and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7C: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于大型有限元模型和接触界面摩擦接触详细描述的叶片盘根节点模态阻尼分析方法。该方法允许分析:(i)单个叶片振动和(ii)任何模态族(低模态和高模态)的叶片-盘组件,计算不同振动水平的模态阻尼因子。计算采用三维实体有限元模型。通过瞬态动力学分析,在时域内进行分析。该方法允许使用广泛可用的有限元包,并基于直接计算根节点上由于模拟表面与表面摩擦接触相互作用的众多接触单元上的微滑移而耗散的能量。采用高保真模型,对不同叶片模态振型、发动机级激励数和节径数的简化和真实叶盘模型进行了模态阻尼因子与振动幅值的关系数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Nonlinear Modal Damping due to Friction at Blade Roots Using High-Fidelity Modelling
In this paper, a methodology is developed for analysis of modal damping in root joints of bladed discs using large finite element models and detailed description of friction contacts at contact interfaces of the joints. The methods allows the analysis of: (i) a single blade vibration and (ii) a bladed-disc assembly for any family of modes (lower and higher modes) calculating the modal damping factors for different levels of vibrations. Three-dimension solid finite element models are used in the calculations. The analysis is performed in time domain through the transient dynamics analysis. The methodology allows the use of widely available finite element packages and based on the direct calculation of the energy dissipated at root joints due to micro-slip over the multitude of contact elements modelling the surface-to-surface friction contact interactions. The numerical studies of the dependency of modal damping factors on the vibration amplitudes are performed for simplified and realistic bladed disc models for different blade mode shapes, engine-order excitation numbers and nodal diameter numbers using high-fidelity models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信