具有时间结构的统计相关源的提取

A. Barros, A. Cichocki, N. Ohnishi
{"title":"具有时间结构的统计相关源的提取","authors":"A. Barros, A. Cichocki, N. Ohnishi","doi":"10.1109/SBRN.2000.889714","DOIUrl":null,"url":null,"abstract":"In this work we develop a very simple batch learning algorithm for semi-blind extraction of a desired source signal with temporal structure from linear mixtures. Although we use the concept of sequential blind extraction of sources and independent component analysis (ICA), we do not carry out the extraction in a completely blind manner neither we assume that sources are statistically independent. In fact, we show that the a priori information about the autocorrelation function of primary sources can be used to extract the desired signals (sources of interest) from their mixtures. Extensive computer simulations and real data application experiments confirm the validity and high performance of the proposed algorithm.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"43 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extraction of statistically dependent sources with temporal structure\",\"authors\":\"A. Barros, A. Cichocki, N. Ohnishi\",\"doi\":\"10.1109/SBRN.2000.889714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we develop a very simple batch learning algorithm for semi-blind extraction of a desired source signal with temporal structure from linear mixtures. Although we use the concept of sequential blind extraction of sources and independent component analysis (ICA), we do not carry out the extraction in a completely blind manner neither we assume that sources are statistically independent. In fact, we show that the a priori information about the autocorrelation function of primary sources can be used to extract the desired signals (sources of interest) from their mixtures. Extensive computer simulations and real data application experiments confirm the validity and high performance of the proposed algorithm.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"43 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们开发了一种非常简单的批量学习算法,用于从线性混合中半盲提取具有时间结构的期望源信号。虽然我们使用了顺序盲提取源和独立成分分析(ICA)的概念,但我们并没有以完全盲的方式进行提取,也没有假设源在统计上是独立的。事实上,我们证明了有关原始源的自相关函数的先验信息可以用于从它们的混合物中提取所需的信号(感兴趣的源)。大量的计算机仿真和实际数据应用实验验证了该算法的有效性和高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of statistically dependent sources with temporal structure
In this work we develop a very simple batch learning algorithm for semi-blind extraction of a desired source signal with temporal structure from linear mixtures. Although we use the concept of sequential blind extraction of sources and independent component analysis (ICA), we do not carry out the extraction in a completely blind manner neither we assume that sources are statistically independent. In fact, we show that the a priori information about the autocorrelation function of primary sources can be used to extract the desired signals (sources of interest) from their mixtures. Extensive computer simulations and real data application experiments confirm the validity and high performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信