并发程序验证的声音序列化

Azadeh Farzan, Dominik Klumpp, A. Podelski
{"title":"并发程序验证的声音序列化","authors":"Azadeh Farzan, Dominik Klumpp, A. Podelski","doi":"10.1145/3519939.3523727","DOIUrl":null,"url":null,"abstract":"We present a systematic investigation and experimental evaluation of a large space of algorithms for the verification of concurrent programs. The algorithms are based on sequentialization. In the analysis of concurrent programs, the general idea of sequentialization is to select a subset of interleavings, represent this subset as a sequential program, and apply a generic analysis for sequential programs. For the purpose of verification, the sequentialization has to be sound (meaning that the proof for the sequential program entails the correctness of the concurrent program). We use the concept of a preference order to define which interleavings the sequentialization is to select (\"the most preferred ones\"). A verification algorithm based on sound sequentialization that is parametrized in a preference order allows us to directly evaluate the impact of the selection of the subset of interleavings on the performance of the algorithm. Our experiments indicate the practical potential of sound sequentialization for concurrent program verification.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sound sequentialization for concurrent program verification\",\"authors\":\"Azadeh Farzan, Dominik Klumpp, A. Podelski\",\"doi\":\"10.1145/3519939.3523727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a systematic investigation and experimental evaluation of a large space of algorithms for the verification of concurrent programs. The algorithms are based on sequentialization. In the analysis of concurrent programs, the general idea of sequentialization is to select a subset of interleavings, represent this subset as a sequential program, and apply a generic analysis for sequential programs. For the purpose of verification, the sequentialization has to be sound (meaning that the proof for the sequential program entails the correctness of the concurrent program). We use the concept of a preference order to define which interleavings the sequentialization is to select (\\\"the most preferred ones\\\"). A verification algorithm based on sound sequentialization that is parametrized in a preference order allows us to directly evaluate the impact of the selection of the subset of interleavings on the performance of the algorithm. Our experiments indicate the practical potential of sound sequentialization for concurrent program verification.\",\"PeriodicalId\":140942,\"journal\":{\"name\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3519939.3523727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519939.3523727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们对并发程序验证的大量算法进行了系统的研究和实验评估。这些算法是基于序列化的。在并发程序的分析中,排序的一般思想是选择交错的一个子集,将这个子集表示为一个顺序程序,并对顺序程序应用通用分析。为了验证的目的,顺序化必须是合理的(这意味着顺序程序的证明需要并发程序的正确性)。我们使用首选顺序的概念来定义要选择的交错序列(“最优选的交错”)。一种基于声音序列化的验证算法,它以偏好顺序参数化,允许我们直接评估交错子集的选择对算法性能的影响。我们的实验表明声音序列化在并发程序验证中的实际潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound sequentialization for concurrent program verification
We present a systematic investigation and experimental evaluation of a large space of algorithms for the verification of concurrent programs. The algorithms are based on sequentialization. In the analysis of concurrent programs, the general idea of sequentialization is to select a subset of interleavings, represent this subset as a sequential program, and apply a generic analysis for sequential programs. For the purpose of verification, the sequentialization has to be sound (meaning that the proof for the sequential program entails the correctness of the concurrent program). We use the concept of a preference order to define which interleavings the sequentialization is to select ("the most preferred ones"). A verification algorithm based on sound sequentialization that is parametrized in a preference order allows us to directly evaluate the impact of the selection of the subset of interleavings on the performance of the algorithm. Our experiments indicate the practical potential of sound sequentialization for concurrent program verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信