降低风险传染的进化最优网络设计

Takanori Komatsu, A. Namatame
{"title":"降低风险传染的进化最优网络设计","authors":"Takanori Komatsu, A. Namatame","doi":"10.1109/ICNC.2011.6022536","DOIUrl":null,"url":null,"abstract":"Many real-world networks increase interdependencies and this creates challenges for handling network risks like cascading failure. In this paper, we propose an evolutionary approach for designing optimal networks to mitigate network risks. In general there is usually a trade-off between risk contagion and risk sharing, and optimizing a network requires the selection of a proper fitness function. We use the maximum eigenvalue of the adjacency matrix of a network to control risk contagion. The evolutionary optimized networks are characterized as homogeneous networks where all nodes have, roughly speaking, the same degree. We also show that maximum eigenvalue can be used as the index of robustness against cascading failure. The network with smaller maximum eigenvalue has better robustness against cascading failure.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An evolutionary optimal network design to mitigate risk contagion\",\"authors\":\"Takanori Komatsu, A. Namatame\",\"doi\":\"10.1109/ICNC.2011.6022536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world networks increase interdependencies and this creates challenges for handling network risks like cascading failure. In this paper, we propose an evolutionary approach for designing optimal networks to mitigate network risks. In general there is usually a trade-off between risk contagion and risk sharing, and optimizing a network requires the selection of a proper fitness function. We use the maximum eigenvalue of the adjacency matrix of a network to control risk contagion. The evolutionary optimized networks are characterized as homogeneous networks where all nodes have, roughly speaking, the same degree. We also show that maximum eigenvalue can be used as the index of robustness against cascading failure. The network with smaller maximum eigenvalue has better robustness against cascading failure.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多现实世界的网络增加了相互依赖性,这为处理级联故障等网络风险带来了挑战。在本文中,我们提出了一种进化的方法来设计最优网络以降低网络风险。一般来说,风险传染和风险分担之间通常存在权衡,优化网络需要选择合适的适应度函数。我们利用网络邻接矩阵的最大特征值来控制风险传染。进化优化网络具有同构网络的特征,其中所有节点的程度大致相同。我们还证明了最大特征值可以作为抗级联故障鲁棒性的指标。最大特征值越小,网络对级联故障的鲁棒性越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary optimal network design to mitigate risk contagion
Many real-world networks increase interdependencies and this creates challenges for handling network risks like cascading failure. In this paper, we propose an evolutionary approach for designing optimal networks to mitigate network risks. In general there is usually a trade-off between risk contagion and risk sharing, and optimizing a network requires the selection of a proper fitness function. We use the maximum eigenvalue of the adjacency matrix of a network to control risk contagion. The evolutionary optimized networks are characterized as homogeneous networks where all nodes have, roughly speaking, the same degree. We also show that maximum eigenvalue can be used as the index of robustness against cascading failure. The network with smaller maximum eigenvalue has better robustness against cascading failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信