具有分数阶导数和相位约束的群体追捕问题中追捕者的逃避

A. Bannikov
{"title":"具有分数阶导数和相位约束的群体追捕问题中追捕者的逃避","authors":"A. Bannikov","doi":"10.1109/STAB.2018.8408347","DOIUrl":null,"url":null,"abstract":"In this paper we consider the evasion problem from the group of pursuers in the finite-dimensional Euclidean space. The motion is describe by the linear system of fractional order (<sup>C</sup>D<sup>α</sup><inf>0+</inf> z<inf>i</inf>) = Az<inf>i</inf> + u<inf>i</inf> - v, Where <sup>C</sup>D<sup>α</sup><inf>0+</inf>f is the Caputo derivative of order α ∊ (0,1) of the function f and A is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.","PeriodicalId":395462,"journal":{"name":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evasion from pursuers in the problem of group pursuit with fractional derivatives and phase constraints\",\"authors\":\"A. Bannikov\",\"doi\":\"10.1109/STAB.2018.8408347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the evasion problem from the group of pursuers in the finite-dimensional Euclidean space. The motion is describe by the linear system of fractional order (<sup>C</sup>D<sup>α</sup><inf>0+</inf> z<inf>i</inf>) = Az<inf>i</inf> + u<inf>i</inf> - v, Where <sup>C</sup>D<sup>α</sup><inf>0+</inf>f is the Caputo derivative of order α ∊ (0,1) of the function f and A is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.\",\"PeriodicalId\":395462,\"journal\":{\"name\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB.2018.8408347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB.2018.8408347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究有限维欧几里德空间中跟踪者群的回避问题。用分数阶(CDα0+ zi) = Azi + ui - v的线性系统来描述运动,其中CDα0+f是函数f的α阶(0,1)的Caputo导数,A是一个简单矩阵。初始位置在初始时间给出。所有参与人的可接受控制的集合是一个凸紧集。进一步假设回避器不离开具有非空内部的凸多面体。根据博弈的初始位置和参数,得到了回避问题可解的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evasion from pursuers in the problem of group pursuit with fractional derivatives and phase constraints
In this paper we consider the evasion problem from the group of pursuers in the finite-dimensional Euclidean space. The motion is describe by the linear system of fractional order (CDα0+ zi) = Azi + ui - v, Where CDα0+f is the Caputo derivative of order α ∊ (0,1) of the function f and A is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信