商业工作负载中的内存一致性活动预测

Stephen Somogyi, T. Wenisch, N. Hardavellas, Jangwoo Kim, A. Ailamaki, B. Falsafi
{"title":"商业工作负载中的内存一致性活动预测","authors":"Stephen Somogyi, T. Wenisch, N. Hardavellas, Jangwoo Kim, A. Ailamaki, B. Falsafi","doi":"10.1145/1054943.1054949","DOIUrl":null,"url":null,"abstract":"Recent research indicates that prediction-based coherence optimizations offer substantial performance improvements for scientific applications in distributed shared memory multiprocessors. Important commercial applications also show sensitivity to coherence latency, which will become more acute in the future as technology scales. Therefore it is important to investigate prediction of memory coherence activity in the context of commercial workloads.This paper studies a trace-based Downgrade Predictor (DGP) for predicting last stores to shared cache blocks, and a pattern-based Consumer Set Predictor (CSP) for predicting subsequent readers. We evaluate this class of predictors for the first time on commercial applications and demonstrate that our DGP correctly predicts 47%-76% of last stores. Memory sharing patterns in commercial workloads are inherently non-repetitive; hence CSP cannot attain high coverage. We perform an opportunity study of a DGP enhanced through competitive underlying predictors, and in commercial and scientific applications, demonstrate potential to increase coverage up to 14%.","PeriodicalId":249099,"journal":{"name":"Workshop on Memory Performance Issues","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Memory coherence activity prediction in commercial workloads\",\"authors\":\"Stephen Somogyi, T. Wenisch, N. Hardavellas, Jangwoo Kim, A. Ailamaki, B. Falsafi\",\"doi\":\"10.1145/1054943.1054949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research indicates that prediction-based coherence optimizations offer substantial performance improvements for scientific applications in distributed shared memory multiprocessors. Important commercial applications also show sensitivity to coherence latency, which will become more acute in the future as technology scales. Therefore it is important to investigate prediction of memory coherence activity in the context of commercial workloads.This paper studies a trace-based Downgrade Predictor (DGP) for predicting last stores to shared cache blocks, and a pattern-based Consumer Set Predictor (CSP) for predicting subsequent readers. We evaluate this class of predictors for the first time on commercial applications and demonstrate that our DGP correctly predicts 47%-76% of last stores. Memory sharing patterns in commercial workloads are inherently non-repetitive; hence CSP cannot attain high coverage. We perform an opportunity study of a DGP enhanced through competitive underlying predictors, and in commercial and scientific applications, demonstrate potential to increase coverage up to 14%.\",\"PeriodicalId\":249099,\"journal\":{\"name\":\"Workshop on Memory Performance Issues\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory Performance Issues\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1054943.1054949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory Performance Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1054943.1054949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

最近的研究表明,基于预测的一致性优化为分布式共享内存多处理器的科学应用提供了实质性的性能改进。重要的商业应用也显示出对相干延迟的敏感性,随着技术规模的扩大,这将在未来变得更加严重。因此,在商业工作负载的背景下研究记忆一致性活动的预测是很重要的。本文研究了一个基于跟踪的降级预测器(DGP),用于预测共享缓存块的最后存储,以及一个基于模式的消费者集预测器(CSP),用于预测后续读者。我们首次在商业应用中评估了这类预测器,并证明我们的DGP正确预测了47%-76%的最新商店。商业工作负载中的内存共享模式本质上是非重复的;因此,CSP无法实现高覆盖率。我们对通过竞争性潜在预测因子增强的DGP进行了机会研究,并在商业和科学应用中证明了将覆盖率提高14%的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory coherence activity prediction in commercial workloads
Recent research indicates that prediction-based coherence optimizations offer substantial performance improvements for scientific applications in distributed shared memory multiprocessors. Important commercial applications also show sensitivity to coherence latency, which will become more acute in the future as technology scales. Therefore it is important to investigate prediction of memory coherence activity in the context of commercial workloads.This paper studies a trace-based Downgrade Predictor (DGP) for predicting last stores to shared cache blocks, and a pattern-based Consumer Set Predictor (CSP) for predicting subsequent readers. We evaluate this class of predictors for the first time on commercial applications and demonstrate that our DGP correctly predicts 47%-76% of last stores. Memory sharing patterns in commercial workloads are inherently non-repetitive; hence CSP cannot attain high coverage. We perform an opportunity study of a DGP enhanced through competitive underlying predictors, and in commercial and scientific applications, demonstrate potential to increase coverage up to 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信