基于随机投影的随机森林缺失基因表达数据的估算

Lovedeep Gondara
{"title":"基于随机投影的随机森林缺失基因表达数据的估算","authors":"Lovedeep Gondara","doi":"10.1109/ICMLA.2015.29","DOIUrl":null,"url":null,"abstract":"Measurement error or lack of proper experimental setup often results in invalid or missing data in gene expression studies. Small sample size and cost of re-running the experiment presents a need for an efficient missing data imputation technique. In this paper, we propose a method based on Random forest using Random projection as a data pre-processing filter. Initial results using varying missing data proportions on variety of real datasets show that the imputation process based on Random forest performs equally well or better than K-Nearest Neighbor & Support Vector Regression based methods. Using Random projection we show that dimensionality of a dataset can be reduced by 50 percent without affecting the imputation process.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Random Forest with Random Projection to Impute Missing Gene Expression Data\",\"authors\":\"Lovedeep Gondara\",\"doi\":\"10.1109/ICMLA.2015.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement error or lack of proper experimental setup often results in invalid or missing data in gene expression studies. Small sample size and cost of re-running the experiment presents a need for an efficient missing data imputation technique. In this paper, we propose a method based on Random forest using Random projection as a data pre-processing filter. Initial results using varying missing data proportions on variety of real datasets show that the imputation process based on Random forest performs equally well or better than K-Nearest Neighbor & Support Vector Regression based methods. Using Random projection we show that dimensionality of a dataset can be reduced by 50 percent without affecting the imputation process.\",\"PeriodicalId\":288427,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2015.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在基因表达研究中,测量误差或缺乏适当的实验设置往往导致数据无效或缺失。样本量小,实验成本低,需要一种有效的缺失数据补全技术。在本文中,我们提出了一种基于随机森林的方法,使用随机投影作为数据预处理滤波器。在各种真实数据集上使用不同缺失数据比例的初步结果表明,基于随机森林的imputation过程与基于k -最近邻和支持向量回归的方法一样好或更好。使用随机投影,我们发现数据集的维数可以在不影响输入过程的情况下降低50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Forest with Random Projection to Impute Missing Gene Expression Data
Measurement error or lack of proper experimental setup often results in invalid or missing data in gene expression studies. Small sample size and cost of re-running the experiment presents a need for an efficient missing data imputation technique. In this paper, we propose a method based on Random forest using Random projection as a data pre-processing filter. Initial results using varying missing data proportions on variety of real datasets show that the imputation process based on Random forest performs equally well or better than K-Nearest Neighbor & Support Vector Regression based methods. Using Random projection we show that dimensionality of a dataset can be reduced by 50 percent without affecting the imputation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信