基于PCA的基于学习的超分辨率图像质量改进

S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai
{"title":"基于PCA的基于学习的超分辨率图像质量改进","authors":"S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai","doi":"10.1109/GCCE.2012.6379917","DOIUrl":null,"url":null,"abstract":"Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.","PeriodicalId":299732,"journal":{"name":"The 1st IEEE Global Conference on Consumer Electronics 2012","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Image quality improvement for learning-based super-resolution with PCA\",\"authors\":\"S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai\",\"doi\":\"10.1109/GCCE.2012.6379917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.\",\"PeriodicalId\":299732,\"journal\":{\"name\":\"The 1st IEEE Global Conference on Consumer Electronics 2012\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 1st IEEE Global Conference on Consumer Electronics 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2012.6379917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Global Conference on Consumer Electronics 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2012.6379917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在此之前,我们提出了一种基于学习的基于TV正则化方法的超分辨率方法,该方法通过去除数据库冗余大大减少了图像处理时间。但是,由于数据库冗余度的过度降低,在重构图像中会出现噪声。在本文中,我们提出了一种新的基于学习的超分辨率方法,其中利用主成分分析(PCA)去除噪声。所获得的算法显著降低了复杂度,并保持了相当的图像质量。这有助于采用基于学习的超分辨率电影,例如互联网和高清电视电影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image quality improvement for learning-based super-resolution with PCA
Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信