在交替的时间内,硬度vs随机性

Emanuele Viola
{"title":"在交替的时间内,硬度vs随机性","authors":"Emanuele Viola","doi":"10.1109/CCC.2003.1214410","DOIUrl":null,"url":null,"abstract":"We study the complexity of building pseudorandom generators (PRGs) with logarithmic seed length from hard functions. We show that, starting from a function f:{0,1}/sup l//spl rarr/{0,1} that is mildly hard on average, i.e. every circuit of size 2/sup /spl Omega/(l)/ fails to compute f on at least a 1/poly(l) fraction of inputs, we can build a PRG: {0,1}/sup O(logn)//spl rarr/{0,1}/sup n/ computable in ATIME(O(1), logn)=alternating time O(logn) with O(1) alternations. Such a PRG implies BP/spl middot/AC/sub 0/=AC/sub 0/ under DLOGTIME-uniformity. On the negative side, we prove a tight lower bound on black-box PRG constructions that are based on worst-case hard functions. We also prove a tight lower bound on black-box worst-case hardness amplification, which is the problem of producing an average-case hard function starting from a worst-case hard one. These lower bounds are obtained by showing that constant depth circuits cannot compute extractors and list-decodable codes.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Hardness vs. randomness within alternating time\",\"authors\":\"Emanuele Viola\",\"doi\":\"10.1109/CCC.2003.1214410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of building pseudorandom generators (PRGs) with logarithmic seed length from hard functions. We show that, starting from a function f:{0,1}/sup l//spl rarr/{0,1} that is mildly hard on average, i.e. every circuit of size 2/sup /spl Omega/(l)/ fails to compute f on at least a 1/poly(l) fraction of inputs, we can build a PRG: {0,1}/sup O(logn)//spl rarr/{0,1}/sup n/ computable in ATIME(O(1), logn)=alternating time O(logn) with O(1) alternations. Such a PRG implies BP/spl middot/AC/sub 0/=AC/sub 0/ under DLOGTIME-uniformity. On the negative side, we prove a tight lower bound on black-box PRG constructions that are based on worst-case hard functions. We also prove a tight lower bound on black-box worst-case hardness amplification, which is the problem of producing an average-case hard function starting from a worst-case hard one. These lower bounds are obtained by showing that constant depth circuits cannot compute extractors and list-decodable codes.\",\"PeriodicalId\":286846,\"journal\":{\"name\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2003.1214410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

研究了从硬函数构造具有对数种子长度的伪随机生成器的复杂性。我们证明,从一个平均来说比较困难的函数f:{0,1}/sup //spl rarr/{0,1}开始,即每个大小为2/sup /spl Omega/(l)/的电路都不能在至少1/poly(l)分数的输入上计算f,我们可以构建一个PRG: {0,1}/sup O(logn)//spl rarr/{0,1}/sup n/可在ATIME(O(1), logn)=交替时间O(logn)与O(1)次交替中计算。这样的PRG意味着在dlogtime均匀性下BP/spl middot/AC/sub 0/=AC/sub 0/。在消极方面,我们证明了基于最坏情况硬函数的黑箱PRG结构的紧下界。我们还证明了黑盒最坏情况硬度放大的紧下界,这是一个从最坏情况硬度函数开始产生平均情况硬度函数的问题。这些下界是通过显示恒定深度电路不能计算提取器和列表可解码代码而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardness vs. randomness within alternating time
We study the complexity of building pseudorandom generators (PRGs) with logarithmic seed length from hard functions. We show that, starting from a function f:{0,1}/sup l//spl rarr/{0,1} that is mildly hard on average, i.e. every circuit of size 2/sup /spl Omega/(l)/ fails to compute f on at least a 1/poly(l) fraction of inputs, we can build a PRG: {0,1}/sup O(logn)//spl rarr/{0,1}/sup n/ computable in ATIME(O(1), logn)=alternating time O(logn) with O(1) alternations. Such a PRG implies BP/spl middot/AC/sub 0/=AC/sub 0/ under DLOGTIME-uniformity. On the negative side, we prove a tight lower bound on black-box PRG constructions that are based on worst-case hard functions. We also prove a tight lower bound on black-box worst-case hardness amplification, which is the problem of producing an average-case hard function starting from a worst-case hard one. These lower bounds are obtained by showing that constant depth circuits cannot compute extractors and list-decodable codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信