基于高阶导数变分模型的屏幕内容图像全参考质量评估方法

Ning Lu, Guohui Li
{"title":"基于高阶导数变分模型的屏幕内容图像全参考质量评估方法","authors":"Ning Lu, Guohui Li","doi":"10.1109/ISPACS.2017.8266442","DOIUrl":null,"url":null,"abstract":"In this work, we design a novel full reference (FR) quality evaluation approach of screen content images (SCIs) based on high order derivative variation model. The major contribution of this paper is the consideration that the human visual system (HVS) is sensitive to derivative information, and we apply the sensitivity property to evaluate the perceptual visual quality of SCIs. Specifically, we employ first-order derivative information to calculate quality map which quantifies the degradation of SCIs. Then, second-order derivative information is utilized to generate the weighting map. Finally, we get the overall quality score by incorporating the weighting map and quality map. The comparison experiments on a public SCI database demonstrate that the proposed approach can obtain the higher accuracy than other relevant ones in visual quality prediction of SCIs.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A full reference quality assessment approach for screen content images based on high order derivative variation model\",\"authors\":\"Ning Lu, Guohui Li\",\"doi\":\"10.1109/ISPACS.2017.8266442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we design a novel full reference (FR) quality evaluation approach of screen content images (SCIs) based on high order derivative variation model. The major contribution of this paper is the consideration that the human visual system (HVS) is sensitive to derivative information, and we apply the sensitivity property to evaluate the perceptual visual quality of SCIs. Specifically, we employ first-order derivative information to calculate quality map which quantifies the degradation of SCIs. Then, second-order derivative information is utilized to generate the weighting map. Finally, we get the overall quality score by incorporating the weighting map and quality map. The comparison experiments on a public SCI database demonstrate that the proposed approach can obtain the higher accuracy than other relevant ones in visual quality prediction of SCIs.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们设计了一种基于高阶导数变化模型的屏幕内容图像(SCIs)全参考(FR)质量评估方法。本文的主要贡献是考虑到人类视觉系统(HVS)对衍生信息的敏感性,并应用敏感性特性来评价SCIs的感知视觉质量。具体来说,我们利用一阶导数信息来计算质量图,从而量化SCIs的退化。然后利用二阶导数信息生成加权图;最后,结合权重图和质量图得到整体质量分数。在一个公共SCI数据库上的对比实验表明,该方法在SCI视觉质量预测方面比其他相关方法具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A full reference quality assessment approach for screen content images based on high order derivative variation model
In this work, we design a novel full reference (FR) quality evaluation approach of screen content images (SCIs) based on high order derivative variation model. The major contribution of this paper is the consideration that the human visual system (HVS) is sensitive to derivative information, and we apply the sensitivity property to evaluate the perceptual visual quality of SCIs. Specifically, we employ first-order derivative information to calculate quality map which quantifies the degradation of SCIs. Then, second-order derivative information is utilized to generate the weighting map. Finally, we get the overall quality score by incorporating the weighting map and quality map. The comparison experiments on a public SCI database demonstrate that the proposed approach can obtain the higher accuracy than other relevant ones in visual quality prediction of SCIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信