在FPGA上高效实现21.56 Gbps AES

X. Zhang, K. K. Parhi
{"title":"在FPGA上高效实现21.56 Gbps AES","authors":"X. Zhang, K. K. Parhi","doi":"10.1109/ACSSC.2004.1399176","DOIUrl":null,"url":null,"abstract":"This paper presents novel high-speed architectures for the hardware implementation of the advanced encryption standard (AES) algorithm. Unlike previous works, which rely on look-up tables to implement the subbytes and invsubbytes transformations of the AES algorithm, the proposed design employs combinational logic only. As a direct consequence, the unbreakable delay incurred by look-up tables in the conventional approaches is eliminated and the advantage of subpipelining can be further explored. Furthermore, composite field arithmetic is employed to reduce the area requirements and different implementations for the inversion in subfield GF(2/sup 4/) are compared. In addition, efficient key expansion architecture suitable for the subpipelined round units is also presented. Using the proposed architecture, a fully subpipelined encryptor with 7 substages in each round unit can achieve a throughput of 21.56 Gbps on a Xilinx XCV 1000e-8bg560 device in nonfeedback modes, which is faster and is 79% more efficient than the fastest previous FPGA implementation known to date.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An efficient 21.56 Gbps AES implementation on FPGA\",\"authors\":\"X. Zhang, K. K. Parhi\",\"doi\":\"10.1109/ACSSC.2004.1399176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents novel high-speed architectures for the hardware implementation of the advanced encryption standard (AES) algorithm. Unlike previous works, which rely on look-up tables to implement the subbytes and invsubbytes transformations of the AES algorithm, the proposed design employs combinational logic only. As a direct consequence, the unbreakable delay incurred by look-up tables in the conventional approaches is eliminated and the advantage of subpipelining can be further explored. Furthermore, composite field arithmetic is employed to reduce the area requirements and different implementations for the inversion in subfield GF(2/sup 4/) are compared. In addition, efficient key expansion architecture suitable for the subpipelined round units is also presented. Using the proposed architecture, a fully subpipelined encryptor with 7 substages in each round unit can achieve a throughput of 21.56 Gbps on a Xilinx XCV 1000e-8bg560 device in nonfeedback modes, which is faster and is 79% more efficient than the fastest previous FPGA implementation known to date.\",\"PeriodicalId\":396779,\"journal\":{\"name\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2004.1399176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种用于高级加密标准(AES)算法硬件实现的新型高速架构。与以前依靠查找表来实现AES算法的子字节和非子字节转换的工作不同,提出的设计仅采用组合逻辑。直接的结果是消除了传统方法中查找表所带来的不可破坏的延迟,并且可以进一步探索子流水线的优势。在此基础上,采用复合场算法减少了对面积的要求,并对子场GF(2/sup 4/)反演的不同实现方式进行了比较。此外,还提出了适用于子流水线圆单元的高效键扩展结构。使用所提出的架构,在Xilinx XCV 1000e-8bg560器件上,在非反馈模式下,每个轮单元有7个子级的完全子流水线加密器可以实现21.56 Gbps的吞吐量,比迄今为止已知的最快FPGA实现更快,效率提高79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient 21.56 Gbps AES implementation on FPGA
This paper presents novel high-speed architectures for the hardware implementation of the advanced encryption standard (AES) algorithm. Unlike previous works, which rely on look-up tables to implement the subbytes and invsubbytes transformations of the AES algorithm, the proposed design employs combinational logic only. As a direct consequence, the unbreakable delay incurred by look-up tables in the conventional approaches is eliminated and the advantage of subpipelining can be further explored. Furthermore, composite field arithmetic is employed to reduce the area requirements and different implementations for the inversion in subfield GF(2/sup 4/) are compared. In addition, efficient key expansion architecture suitable for the subpipelined round units is also presented. Using the proposed architecture, a fully subpipelined encryptor with 7 substages in each round unit can achieve a throughput of 21.56 Gbps on a Xilinx XCV 1000e-8bg560 device in nonfeedback modes, which is faster and is 79% more efficient than the fastest previous FPGA implementation known to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信