{"title":"用于电动汽车快速充电的宽输出电压双有源桥式变换器的电力电子模块设计","authors":"Tim M. Al, Dingsihao Lyu, T. Soeiro, P. Bauer","doi":"10.1109/PEMC48073.2021.9432516","DOIUrl":null,"url":null,"abstract":"This paper verifies the potential of utilizing the Dual Active Bridge (DAB) converter as a 10 kW Power Electronics Building Block (PEBB) for the charging of Electric Vehicles (EVs) where a wide output voltage range is required. Following the tendency of the new EV charging standards from CCS and CHAdeMO, the commonly employed isolated DC-DC converter should be able to supply the rated power for different vehicles which employ battery technologies which could range from 300 V up to 1000 V. Rectangular (or phase-shift), triangular and trapezoidal modulation strategies are investigated, of which the last two techniques are used for designing the PEBB. Suitable SiC-based semiconductors are chosen, the passive components are designed and the power losses are derived for the whole operating range. It is found that a high power efficiency can be achieved using the designed system.","PeriodicalId":349940,"journal":{"name":"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design of a Wide Output Voltage Dual Active Bridge Converter as Power Electronics Building Block for the Fast Charging of Electric Vehicles\",\"authors\":\"Tim M. Al, Dingsihao Lyu, T. Soeiro, P. Bauer\",\"doi\":\"10.1109/PEMC48073.2021.9432516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper verifies the potential of utilizing the Dual Active Bridge (DAB) converter as a 10 kW Power Electronics Building Block (PEBB) for the charging of Electric Vehicles (EVs) where a wide output voltage range is required. Following the tendency of the new EV charging standards from CCS and CHAdeMO, the commonly employed isolated DC-DC converter should be able to supply the rated power for different vehicles which employ battery technologies which could range from 300 V up to 1000 V. Rectangular (or phase-shift), triangular and trapezoidal modulation strategies are investigated, of which the last two techniques are used for designing the PEBB. Suitable SiC-based semiconductors are chosen, the passive components are designed and the power losses are derived for the whole operating range. It is found that a high power efficiency can be achieved using the designed system.\",\"PeriodicalId\":349940,\"journal\":{\"name\":\"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)\",\"volume\":\"478 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEMC48073.2021.9432516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEMC48073.2021.9432516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Wide Output Voltage Dual Active Bridge Converter as Power Electronics Building Block for the Fast Charging of Electric Vehicles
This paper verifies the potential of utilizing the Dual Active Bridge (DAB) converter as a 10 kW Power Electronics Building Block (PEBB) for the charging of Electric Vehicles (EVs) where a wide output voltage range is required. Following the tendency of the new EV charging standards from CCS and CHAdeMO, the commonly employed isolated DC-DC converter should be able to supply the rated power for different vehicles which employ battery technologies which could range from 300 V up to 1000 V. Rectangular (or phase-shift), triangular and trapezoidal modulation strategies are investigated, of which the last two techniques are used for designing the PEBB. Suitable SiC-based semiconductors are chosen, the passive components are designed and the power losses are derived for the whole operating range. It is found that a high power efficiency can be achieved using the designed system.