D. R. Isenberg, Seung Baek, Mark Caddell, Michael Mueller, David Hill, Y. Kakad
{"title":"SCARA机械臂重力卸载方法研究","authors":"D. R. Isenberg, Seung Baek, Mark Caddell, Michael Mueller, David Hill, Y. Kakad","doi":"10.1109/ICSEng.2011.37","DOIUrl":null,"url":null,"abstract":"This paper presents a mechanism and control law which is currently under development that is intended to provide gravitational compensation so that lunar bound systems can be terrestrially tested in a simulated lunar gravitational field. The mechanism is a selective compliant articulated robotic arm (SCARA) manipulator. The object to be tested is rigidly attached to the end of the manipulator. The control scheme makes use of a copy of the test-object's dynamical model. This is integrated in real-time and includes the response due to any externally applied forces and torques. The result of this integration is a trajectory in the task-space. The inverse kinematic model of the manipulator is utilized to generate a trajectory in the joint-space and an exponentially stable tracking controller is implemented to drive the manipulator joints along this trajectory.","PeriodicalId":387483,"journal":{"name":"2011 21st International Conference on Systems Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method of Gravity Offloading with a SCARA Manipulator\",\"authors\":\"D. R. Isenberg, Seung Baek, Mark Caddell, Michael Mueller, David Hill, Y. Kakad\",\"doi\":\"10.1109/ICSEng.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a mechanism and control law which is currently under development that is intended to provide gravitational compensation so that lunar bound systems can be terrestrially tested in a simulated lunar gravitational field. The mechanism is a selective compliant articulated robotic arm (SCARA) manipulator. The object to be tested is rigidly attached to the end of the manipulator. The control scheme makes use of a copy of the test-object's dynamical model. This is integrated in real-time and includes the response due to any externally applied forces and torques. The result of this integration is a trajectory in the task-space. The inverse kinematic model of the manipulator is utilized to generate a trajectory in the joint-space and an exponentially stable tracking controller is implemented to drive the manipulator joints along this trajectory.\",\"PeriodicalId\":387483,\"journal\":{\"name\":\"2011 21st International Conference on Systems Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEng.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEng.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Method of Gravity Offloading with a SCARA Manipulator
This paper presents a mechanism and control law which is currently under development that is intended to provide gravitational compensation so that lunar bound systems can be terrestrially tested in a simulated lunar gravitational field. The mechanism is a selective compliant articulated robotic arm (SCARA) manipulator. The object to be tested is rigidly attached to the end of the manipulator. The control scheme makes use of a copy of the test-object's dynamical model. This is integrated in real-time and includes the response due to any externally applied forces and torques. The result of this integration is a trajectory in the task-space. The inverse kinematic model of the manipulator is utilized to generate a trajectory in the joint-space and an exponentially stable tracking controller is implemented to drive the manipulator joints along this trajectory.