通过上下文增强图自动编码器检测极端交通事件

Yue Hu, Ao Qu, D. Work
{"title":"通过上下文增强图自动编码器检测极端交通事件","authors":"Yue Hu, Ao Qu, D. Work","doi":"10.1145/3539735","DOIUrl":null,"url":null,"abstract":"Accurate and timely detection of large events on urban transportation networks enables informed mobility management. This work tackles the problem of extreme event detection on large-scale transportation networks using origin-destination mobility data, which is now widely available. Such data is highly structured in time and space, but high dimensional and sparse. Current multivariate time series anomaly detection methods cannot fully address these challenges. To exploit the structure of mobility data, we formulate the event detection problem in a novel way, as detecting anomalies in a set of time-dependent directed weighted graphs. We further propose a Context augmented Graph Autoencoder (Con-GAE) model to solve the problem, which leverages graph embedding and context embedding techniques to capture the spatial and temporal patterns. Con-GAE adopts an autoencoder framework and detects anomalies via semi-supervised learning. The performance of the method is assessed on several city-scale travel-time datasets from Uber Movement, New York taxis, and Chicago taxis and compared to state-of-the-art approaches. The proposed Con-GAE can achieve an improvement in the area under the curve score as large as 0.15 over the second best method. We also discuss real-world traffic anomalies detected by Con-GAE.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detecting Extreme Traffic Events Via a Context Augmented Graph Autoencoder\",\"authors\":\"Yue Hu, Ao Qu, D. Work\",\"doi\":\"10.1145/3539735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and timely detection of large events on urban transportation networks enables informed mobility management. This work tackles the problem of extreme event detection on large-scale transportation networks using origin-destination mobility data, which is now widely available. Such data is highly structured in time and space, but high dimensional and sparse. Current multivariate time series anomaly detection methods cannot fully address these challenges. To exploit the structure of mobility data, we formulate the event detection problem in a novel way, as detecting anomalies in a set of time-dependent directed weighted graphs. We further propose a Context augmented Graph Autoencoder (Con-GAE) model to solve the problem, which leverages graph embedding and context embedding techniques to capture the spatial and temporal patterns. Con-GAE adopts an autoencoder framework and detects anomalies via semi-supervised learning. The performance of the method is assessed on several city-scale travel-time datasets from Uber Movement, New York taxis, and Chicago taxis and compared to state-of-the-art approaches. The proposed Con-GAE can achieve an improvement in the area under the curve score as large as 0.15 over the second best method. We also discuss real-world traffic anomalies detected by Con-GAE.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

准确及时地检测城市交通网络中的大型事件,实现明智的交通管理。这项工作解决了在大规模交通网络中使用始发目的地移动数据的极端事件检测问题,这些数据现在已经广泛可用。这类数据在时间和空间上具有高度结构化,但具有高维性和稀疏性。目前的多变量时间序列异常检测方法还不能完全解决这些问题。为了利用移动数据的结构,我们以一种新的方式将事件检测问题表述为在一组时间相关的有向加权图中检测异常。我们进一步提出了一种上下文增强图自动编码器(Con-GAE)模型来解决这个问题,该模型利用图嵌入和上下文嵌入技术来捕获空间和时间模式。Con-GAE采用自编码器框架,通过半监督学习检测异常。该方法的性能在优步运动、纽约出租车和芝加哥出租车的几个城市尺度的旅行时间数据集上进行了评估,并与最先进的方法进行了比较。与第二种方法相比,该方法的曲线下面积得分提高了0.15。我们还讨论了Con-GAE检测到的真实世界的流量异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Extreme Traffic Events Via a Context Augmented Graph Autoencoder
Accurate and timely detection of large events on urban transportation networks enables informed mobility management. This work tackles the problem of extreme event detection on large-scale transportation networks using origin-destination mobility data, which is now widely available. Such data is highly structured in time and space, but high dimensional and sparse. Current multivariate time series anomaly detection methods cannot fully address these challenges. To exploit the structure of mobility data, we formulate the event detection problem in a novel way, as detecting anomalies in a set of time-dependent directed weighted graphs. We further propose a Context augmented Graph Autoencoder (Con-GAE) model to solve the problem, which leverages graph embedding and context embedding techniques to capture the spatial and temporal patterns. Con-GAE adopts an autoencoder framework and detects anomalies via semi-supervised learning. The performance of the method is assessed on several city-scale travel-time datasets from Uber Movement, New York taxis, and Chicago taxis and compared to state-of-the-art approaches. The proposed Con-GAE can achieve an improvement in the area under the curve score as large as 0.15 over the second best method. We also discuss real-world traffic anomalies detected by Con-GAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信