考虑工艺变化的MLC PCM的slc支持磨损平衡

Mengying Zhao, Lei Jiang, Youtao Zhang, C. Xue
{"title":"考虑工艺变化的MLC PCM的slc支持磨损平衡","authors":"Mengying Zhao, Lei Jiang, Youtao Zhang, C. Xue","doi":"10.1145/2593069.2593217","DOIUrl":null,"url":null,"abstract":"Phase change memory is becoming one of the most promising candidates to replace DRAM as main memory in deep silicon regime. Multi-level cell (MLC) PCM outperforms single level cell (SLC) in terms of capacity while suffering from a weaker cell endurance. Wear leveling strategies are proposed to enhance the endurance but encounters more challenges with the aggravating process variation. Due to endurance variations, balanced write traffic cannot fully exploit the PCM endurance since the weak parts will be worn out sooner than others. In this work, considering process variation, we propose an SLC-enabled wear leveling scheme through dynamic and adaptive mode transformation from MLC to SLC. Instead of redistributing write operations, the proposed scheme dynamically transforms weak and write-dense parts into SLC mode for endurance benefits. The experimental results show that the proposed scheme can improve the endurance by 215% with 4% storage overhead while maintaining the capacity advantage of MLC, compared with the most related work.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"SLC-enabled wear leveling for MLC PCM considering process variation\",\"authors\":\"Mengying Zhao, Lei Jiang, Youtao Zhang, C. Xue\",\"doi\":\"10.1145/2593069.2593217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase change memory is becoming one of the most promising candidates to replace DRAM as main memory in deep silicon regime. Multi-level cell (MLC) PCM outperforms single level cell (SLC) in terms of capacity while suffering from a weaker cell endurance. Wear leveling strategies are proposed to enhance the endurance but encounters more challenges with the aggravating process variation. Due to endurance variations, balanced write traffic cannot fully exploit the PCM endurance since the weak parts will be worn out sooner than others. In this work, considering process variation, we propose an SLC-enabled wear leveling scheme through dynamic and adaptive mode transformation from MLC to SLC. Instead of redistributing write operations, the proposed scheme dynamically transforms weak and write-dense parts into SLC mode for endurance benefits. The experimental results show that the proposed scheme can improve the endurance by 215% with 4% storage overhead while maintaining the capacity advantage of MLC, compared with the most related work.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

相变存储器正在成为取代DRAM成为深硅体制下主存储器的最有希望的候选之一。多级电池(MLC) PCM在容量方面优于单级电池(SLC),但电池续航能力较弱。提出了提高耐磨性的磨平策略,但随着工艺变化的加剧,磨平策略面临着更多的挑战。由于持久性的变化,平衡的写流量不能充分利用PCM持久性,因为较弱的部分会比其他部分更早被磨损。在这项工作中,考虑到工艺变化,我们提出了一种通过从MLC到SLC的动态和自适应模式转换的SLC驱动的磨损平衡方案。该方案不需要重新分配写操作,而是动态地将弱写和写密集的部分转换为SLC模式,以提高持久性。实验结果表明,与大多数相关工作相比,该方案在保持MLC的容量优势的同时,存储开销仅为4%,续航力提高了215%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLC-enabled wear leveling for MLC PCM considering process variation
Phase change memory is becoming one of the most promising candidates to replace DRAM as main memory in deep silicon regime. Multi-level cell (MLC) PCM outperforms single level cell (SLC) in terms of capacity while suffering from a weaker cell endurance. Wear leveling strategies are proposed to enhance the endurance but encounters more challenges with the aggravating process variation. Due to endurance variations, balanced write traffic cannot fully exploit the PCM endurance since the weak parts will be worn out sooner than others. In this work, considering process variation, we propose an SLC-enabled wear leveling scheme through dynamic and adaptive mode transformation from MLC to SLC. Instead of redistributing write operations, the proposed scheme dynamically transforms weak and write-dense parts into SLC mode for endurance benefits. The experimental results show that the proposed scheme can improve the endurance by 215% with 4% storage overhead while maintaining the capacity advantage of MLC, compared with the most related work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信