使用卷积神经网络识别阿拉伯数字

Mouhssine El Atillah, Khalid El Fazazy, J. Riffi
{"title":"使用卷积神经网络识别阿拉伯数字","authors":"Mouhssine El Atillah, Khalid El Fazazy, J. Riffi","doi":"10.1109/ISCV54655.2022.9806129","DOIUrl":null,"url":null,"abstract":"Arabic is the most widely spoken language in the world. However, optical recognition of Arabic handwriting by deep learning networks remains inadequate. Recently, some studies have been based on this field and have produced remarkable results in the recognition of alphabets and Arabic numerals. This article focuses on Arabic numbers recognition problem. We use a convolutional neural network with minimal parameters to overcome the overfitting problem. Preceded by the morphological gradient method to detect images contours. This model applies to the Arabic manuscript numbers database, which consists of 70,000 images available in Kaggle [1]. Our model provides 99.80% classification accuracy with a minimum loss of 0.96%.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of Arabic digits using a convolutional neural network\",\"authors\":\"Mouhssine El Atillah, Khalid El Fazazy, J. Riffi\",\"doi\":\"10.1109/ISCV54655.2022.9806129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arabic is the most widely spoken language in the world. However, optical recognition of Arabic handwriting by deep learning networks remains inadequate. Recently, some studies have been based on this field and have produced remarkable results in the recognition of alphabets and Arabic numerals. This article focuses on Arabic numbers recognition problem. We use a convolutional neural network with minimal parameters to overcome the overfitting problem. Preceded by the morphological gradient method to detect images contours. This model applies to the Arabic manuscript numbers database, which consists of 70,000 images available in Kaggle [1]. Our model provides 99.80% classification accuracy with a minimum loss of 0.96%.\",\"PeriodicalId\":426665,\"journal\":{\"name\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCV54655.2022.9806129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿拉伯语是世界上使用最广泛的语言。然而,通过深度学习网络对阿拉伯笔迹的光学识别仍然不足。近年来,一些基于这一领域的研究在字母和阿拉伯数字的识别方面取得了显著的成果。本文主要研究阿拉伯数字识别问题。我们使用最小参数卷积神经网络来克服过拟合问题。先用形态学梯度法检测图像轮廓。该模型适用于阿拉伯语手稿编号数据库,该数据库由Kaggle提供的70,000张图像组成[1]。我们的模型提供了99.80%的分类准确率,最小损失为0.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Arabic digits using a convolutional neural network
Arabic is the most widely spoken language in the world. However, optical recognition of Arabic handwriting by deep learning networks remains inadequate. Recently, some studies have been based on this field and have produced remarkable results in the recognition of alphabets and Arabic numerals. This article focuses on Arabic numbers recognition problem. We use a convolutional neural network with minimal parameters to overcome the overfitting problem. Preceded by the morphological gradient method to detect images contours. This model applies to the Arabic manuscript numbers database, which consists of 70,000 images available in Kaggle [1]. Our model provides 99.80% classification accuracy with a minimum loss of 0.96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信