{"title":"混合云中成本驱动的服务配置","authors":"Mathias Björkqvist, L. Chen, Walter Binder","doi":"10.1109/SOCA.2012.6449447","DOIUrl":null,"url":null,"abstract":"Hybrid clouds, which comprise nodes both in a private cloud and in a public cloud, have emerged as a new model for service providers to deploy their services. However, given Quality-of-Service requirements for each service, the question of on how many private and public nodes to deploy the services in the most cost-effective way remains to be answered. The challenges faced in the hybrid cloud stem from the disparate time-varying requests across multiple services, the different cost structures of both types of nodes, and the performance characteristics of nodes. In this paper, we propose a novel algorithm to dynamically optimize the allocation of private and public nodes across services, with special focus on the performance-cost tradeoff between private and public nodes. The algorithm is based on an analytical cost-performance framework for service deployment in hybrid clouds. Our evaluation results based on trace-driven simulation show that our proposed node allocation algorithm can effectively achieve a good cost-performance ratio, compared to the deployment of purely public and private cloud.","PeriodicalId":298564,"journal":{"name":"2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Cost-driven service provisioning in hybrid clouds\",\"authors\":\"Mathias Björkqvist, L. Chen, Walter Binder\",\"doi\":\"10.1109/SOCA.2012.6449447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid clouds, which comprise nodes both in a private cloud and in a public cloud, have emerged as a new model for service providers to deploy their services. However, given Quality-of-Service requirements for each service, the question of on how many private and public nodes to deploy the services in the most cost-effective way remains to be answered. The challenges faced in the hybrid cloud stem from the disparate time-varying requests across multiple services, the different cost structures of both types of nodes, and the performance characteristics of nodes. In this paper, we propose a novel algorithm to dynamically optimize the allocation of private and public nodes across services, with special focus on the performance-cost tradeoff between private and public nodes. The algorithm is based on an analytical cost-performance framework for service deployment in hybrid clouds. Our evaluation results based on trace-driven simulation show that our proposed node allocation algorithm can effectively achieve a good cost-performance ratio, compared to the deployment of purely public and private cloud.\",\"PeriodicalId\":298564,\"journal\":{\"name\":\"2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCA.2012.6449447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCA.2012.6449447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid clouds, which comprise nodes both in a private cloud and in a public cloud, have emerged as a new model for service providers to deploy their services. However, given Quality-of-Service requirements for each service, the question of on how many private and public nodes to deploy the services in the most cost-effective way remains to be answered. The challenges faced in the hybrid cloud stem from the disparate time-varying requests across multiple services, the different cost structures of both types of nodes, and the performance characteristics of nodes. In this paper, we propose a novel algorithm to dynamically optimize the allocation of private and public nodes across services, with special focus on the performance-cost tradeoff between private and public nodes. The algorithm is based on an analytical cost-performance framework for service deployment in hybrid clouds. Our evaluation results based on trace-driven simulation show that our proposed node allocation algorithm can effectively achieve a good cost-performance ratio, compared to the deployment of purely public and private cloud.