{"title":"银行业信用评分数据挖掘技术的比较研究","authors":"S. Huang, Min-Yuh Day","doi":"10.1109/IRI.2013.6642534","DOIUrl":null,"url":null,"abstract":"Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A comparative study of data mining techniques for credit scoring in banking\",\"authors\":\"S. Huang, Min-Yuh Day\",\"doi\":\"10.1109/IRI.2013.6642534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study of data mining techniques for credit scoring in banking
Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.