银行业信用评分数据挖掘技术的比较研究

S. Huang, Min-Yuh Day
{"title":"银行业信用评分数据挖掘技术的比较研究","authors":"S. Huang, Min-Yuh Day","doi":"10.1109/IRI.2013.6642534","DOIUrl":null,"url":null,"abstract":"Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A comparative study of data mining techniques for credit scoring in banking\",\"authors\":\"S. Huang, Min-Yuh Day\",\"doi\":\"10.1109/IRI.2013.6642534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

信贷正成为银行业最重要的收入之一。以往的研究表明,逻辑回归和神经网络的信用风险评分模型效果较好。本文的目的是对分类模型的准确性进行比较研究,降低信用风险。本文利用企业软件的数据挖掘技术,构建了四种分类模型,即决策树、逻辑回归、神经网络和支持向量机,用于银行业信用评分。我们对银行信用评分的17种分类模型的准确性进行了系统的比较和分析。本文的贡献在于我们使用不同的分类方法来构建分类模型并比较分类模型的准确率,证据表明支持向量机模型在银行业信用评分方面具有更高的准确率,因此优于过去的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of data mining techniques for credit scoring in banking
Credit is becoming one of the most important incomes of banking. Past studies indicate that the credit risk scoring model has been better for Logistic Regression and Neural Network. The purpose of this paper is to conduct a comparative study on the accuracy of classification models and reduce the credit risk. In this paper, we use data mining of enterprise software to construct four classification models, namely, decision tree, logistic regression, neural network and support vector machine, for credit scoring in banking. We conduct a systematic comparison and analysis on the accuracy of 17 classification models for credit scoring in banking. The contribution of this paper is that we use different classification methods to construct classification models and compare classification models accuracy, and the evidence demonstrates that the support vector machine models have higher accuracy rates and therefore outperform past classification methods in the context of credit scoring in banking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信