视网膜血管、视盘和黄斑的高光谱图像分割

A. Garifullin, Peeter Koobi, Pasi Ylitepsa, Kati Adjers, M. Hauta-Kasari, H. Uusitalo, L. Lensu
{"title":"视网膜血管、视盘和黄斑的高光谱图像分割","authors":"A. Garifullin, Peeter Koobi, Pasi Ylitepsa, Kati Adjers, M. Hauta-Kasari, H. Uusitalo, L. Lensu","doi":"10.1109/DICTA.2018.8615761","DOIUrl":null,"url":null,"abstract":"The most common approach for retinal imaging is the eye fundus photography which usually results in RGB images. Recent studies show that the additional spectral information provides useful features for automatic retinal image analysis. The current work extends recent research on the joint segmentation of retinal vasculature, optic disc and macula which often appears in different retinal image analysis tasks. Fully convolutional neural networks are utilized to solve the segmentation problem. It is shown that the network architectures can be effectively modified for the spectral data and the utilization of spectral information provides moderate improvements in retinal image segmentation.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hyperspectral Image Segmentation of Retinal Vasculature, Optic Disc and Macula\",\"authors\":\"A. Garifullin, Peeter Koobi, Pasi Ylitepsa, Kati Adjers, M. Hauta-Kasari, H. Uusitalo, L. Lensu\",\"doi\":\"10.1109/DICTA.2018.8615761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common approach for retinal imaging is the eye fundus photography which usually results in RGB images. Recent studies show that the additional spectral information provides useful features for automatic retinal image analysis. The current work extends recent research on the joint segmentation of retinal vasculature, optic disc and macula which often appears in different retinal image analysis tasks. Fully convolutional neural networks are utilized to solve the segmentation problem. It is shown that the network architectures can be effectively modified for the spectral data and the utilization of spectral information provides moderate improvements in retinal image segmentation.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视网膜成像最常见的方法是眼底摄影,通常会得到RGB图像。近年来的研究表明,额外的光谱信息为自动视网膜图像分析提供了有用的特征。目前的工作是对视网膜血管、视盘和黄斑的联合分割研究的延伸,这在不同的视网膜图像分析任务中经常出现。利用全卷积神经网络解决图像分割问题。实验结果表明,基于光谱数据的网络结构可以得到有效的改进,光谱信息的利用对视网膜图像分割有一定的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Image Segmentation of Retinal Vasculature, Optic Disc and Macula
The most common approach for retinal imaging is the eye fundus photography which usually results in RGB images. Recent studies show that the additional spectral information provides useful features for automatic retinal image analysis. The current work extends recent research on the joint segmentation of retinal vasculature, optic disc and macula which often appears in different retinal image analysis tasks. Fully convolutional neural networks are utilized to solve the segmentation problem. It is shown that the network architectures can be effectively modified for the spectral data and the utilization of spectral information provides moderate improvements in retinal image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信