38406501359372282063949和All That:单态法诺问题

Sachi Hashimoto, Borys Kadets
{"title":"38406501359372282063949和All That:单态法诺问题","authors":"Sachi Hashimoto, Borys Kadets","doi":"10.1093/imrn/rnaa275","DOIUrl":null,"url":null,"abstract":"A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"38406501359372282063949 and All That: Monodromy of Fano Problems\",\"authors\":\"Sachi Hashimoto, Borys Kadets\",\"doi\":\"10.1093/imrn/rnaa275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\\\\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Fano问题是计算任意特征域上$\mathbb{P}^n$中的完全交点上$r$维线性子空间的枚举问题,每当相应的Fano格式是有限的。一个经典的例子是在一个三次曲面上列举直线。研究了有限Fano格式在完全交点X变化时的单性问题。证明了大多数情况下单群是对称的或交替的。在特殊情况下,单性组是Weyl组$W(E_6)$或$W(D_k)$中的一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
38406501359372282063949 and All That: Monodromy of Fano Problems
A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信