{"title":"38406501359372282063949和All That:单态法诺问题","authors":"Sachi Hashimoto, Borys Kadets","doi":"10.1093/imrn/rnaa275","DOIUrl":null,"url":null,"abstract":"A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"38406501359372282063949 and All That: Monodromy of Fano Problems\",\"authors\":\"Sachi Hashimoto, Borys Kadets\",\"doi\":\"10.1093/imrn/rnaa275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\\\\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
38406501359372282063949 and All That: Monodromy of Fano Problems
A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the exceptional cases, the monodromy group is one of the Weyl groups $W(E_6)$ or $W(D_k)$.