{"title":"基于信念函数理论和近似信念函数的树种识别融合系统","authors":"R. Ameur, L. Valet, D. Coquin","doi":"10.1109/IPTA.2016.7820955","DOIUrl":null,"url":null,"abstract":"In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fusion system based on belief functions theory and approximated belief functions for tree species recognition\",\"authors\":\"R. Ameur, L. Valet, D. Coquin\",\"doi\":\"10.1109/IPTA.2016.7820955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusion system based on belief functions theory and approximated belief functions for tree species recognition
In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.