基于信念函数理论和近似信念函数的树种识别融合系统

R. Ameur, L. Valet, D. Coquin
{"title":"基于信念函数理论和近似信念函数的树种识别融合系统","authors":"R. Ameur, L. Valet, D. Coquin","doi":"10.1109/IPTA.2016.7820955","DOIUrl":null,"url":null,"abstract":"In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fusion system based on belief functions theory and approximated belief functions for tree species recognition\",\"authors\":\"R. Ameur, L. Valet, D. Coquin\",\"doi\":\"10.1109/IPTA.2016.7820955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于树叶的树种识别信息融合系统。这种方法包括用从叶子照片中提取的属性来训练子分类器(随机森林)。数据库不完整、不完整,部分数据冲突。基于信念函数理论的分层融合系统允许不同子分类器提供的数据融合。测试了降低计算复杂度的不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion system based on belief functions theory and approximated belief functions for tree species recognition
In this paper, an information fusion system for tree species recognition through leaves is proposed. This approach consists in training sub-classifiers (Random forests) with attributes extracted from leaf photos. The database is incomplete, partial and some data is conflicting. A hierarchical fusion system based on Belief functions theory allows the fusion of data provided by different sub-classifiers. Different procedures for reducing computational complexity are tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信