闪存中的数据移动和聚合

Anxiao Jiang, M. Langberg, R. Mateescu, Jehoshua Bruck
{"title":"闪存中的数据移动和聚合","authors":"Anxiao Jiang, M. Langberg, R. Mateescu, Jehoshua Bruck","doi":"10.1109/ISIT.2010.5513391","DOIUrl":null,"url":null,"abstract":"NAND flash memories have become the most widely used type of non-volatile memories. In a NAND flash memory, every block of memory cells consists of numerous pages, and rewriting a single page requires the whole block to be erased. As block erasures significantly reduce the longevity, speed and power efficiency of flash memories, it is critical to minimize the number of erasures when data are reorganized. This leads to the data movement problem, where data need to be switched in blocks, and the objective is to minimize the number of block erasures. It has been shown that optimal solutions can be obtained by coding. However, coding-based algorithms with the minimum coding complexity still remain an important topic to study. In this paper, we present a very efficient data movement algorithm with coding over GF(2) and with the minimum storage requirement. We also study data movement with more auxiliary blocks and present its corresponding solution. Furthermore, we extend the study to the data aggregation problem, where data can not only be moved but also aggregated. We present both non-coding and coding-based solutions, and rigorously prove the performance gain by using coding.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data movement and aggregation in flash memories\",\"authors\":\"Anxiao Jiang, M. Langberg, R. Mateescu, Jehoshua Bruck\",\"doi\":\"10.1109/ISIT.2010.5513391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NAND flash memories have become the most widely used type of non-volatile memories. In a NAND flash memory, every block of memory cells consists of numerous pages, and rewriting a single page requires the whole block to be erased. As block erasures significantly reduce the longevity, speed and power efficiency of flash memories, it is critical to minimize the number of erasures when data are reorganized. This leads to the data movement problem, where data need to be switched in blocks, and the objective is to minimize the number of block erasures. It has been shown that optimal solutions can be obtained by coding. However, coding-based algorithms with the minimum coding complexity still remain an important topic to study. In this paper, we present a very efficient data movement algorithm with coding over GF(2) and with the minimum storage requirement. We also study data movement with more auxiliary blocks and present its corresponding solution. Furthermore, we extend the study to the data aggregation problem, where data can not only be moved but also aggregated. We present both non-coding and coding-based solutions, and rigorously prove the performance gain by using coding.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

NAND闪存已成为应用最广泛的非易失性存储器类型。在NAND闪存中,每个存储单元块由许多页组成,重写单个页需要擦除整个块。由于块擦除会显著降低闪存的寿命、速度和功率效率,因此在数据重组时尽量减少擦除次数至关重要。这就导致了数据移动问题,数据需要以块为单位进行交换,而目标是尽量减少块擦除的次数。结果表明,通过编码可以得到最优解。然而,如何使编码复杂度最小的基于编码的算法仍然是一个重要的研究课题。在本文中,我们提出了一种非常有效的数据移动算法,该算法使用GF(2)编码,并且具有最小的存储需求。研究了多辅助块的数据移动问题,并给出了相应的解决方案。进一步,我们将研究扩展到数据聚合问题,其中数据不仅可以移动,而且可以聚合。我们提出了非编码和基于编码的解决方案,并严格证明了使用编码的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data movement and aggregation in flash memories
NAND flash memories have become the most widely used type of non-volatile memories. In a NAND flash memory, every block of memory cells consists of numerous pages, and rewriting a single page requires the whole block to be erased. As block erasures significantly reduce the longevity, speed and power efficiency of flash memories, it is critical to minimize the number of erasures when data are reorganized. This leads to the data movement problem, where data need to be switched in blocks, and the objective is to minimize the number of block erasures. It has been shown that optimal solutions can be obtained by coding. However, coding-based algorithms with the minimum coding complexity still remain an important topic to study. In this paper, we present a very efficient data movement algorithm with coding over GF(2) and with the minimum storage requirement. We also study data movement with more auxiliary blocks and present its corresponding solution. Furthermore, we extend the study to the data aggregation problem, where data can not only be moved but also aggregated. We present both non-coding and coding-based solutions, and rigorously prove the performance gain by using coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信