可重构智能表面辅助MIMO-MAC与部分CSI

Jiayuan Xiong, Li You, Yufei Huang, D. W. K. Ng, Wen Wang, Xiqi Gao
{"title":"可重构智能表面辅助MIMO-MAC与部分CSI","authors":"Jiayuan Xiong, Li You, Yufei Huang, D. W. K. Ng, Wen Wang, Xiqi Gao","doi":"10.1109/ICC40277.2020.9149355","DOIUrl":null,"url":null,"abstract":"This paper considers the application of reconfigurable intelligent surfaces (RISs) to assist multiuser multipleinput multiple-output multiple access channel (MIMO-MAC) systems. In contrast to most existing works on RIS-assisted systems assuming the availability of full channel state information (CSI), only partial CSI is required in our investigation, including the instantaneous CSI of the channel from a RIS to a base station and the statistical CSI of the channels from user terminals (UTs) to the RIS. We investigate the joint design of both the transmit covariance matrices of the UTs and the RIS phase shift matrix under the system global energy efficiency (GEE) maximization criterion. To maximize the GEE, we first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, we derive an asymptotic expression of the objective function with the aid of random matrix theory to reduce the computational cost. We further propose a lowcomplexity algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the GEE performance gains provided by RIS-assisted MIMO-MAC systems.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reconfigurable Intelligent Surfaces Assisted MIMO-MAC with Partial CSI\",\"authors\":\"Jiayuan Xiong, Li You, Yufei Huang, D. W. K. Ng, Wen Wang, Xiqi Gao\",\"doi\":\"10.1109/ICC40277.2020.9149355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the application of reconfigurable intelligent surfaces (RISs) to assist multiuser multipleinput multiple-output multiple access channel (MIMO-MAC) systems. In contrast to most existing works on RIS-assisted systems assuming the availability of full channel state information (CSI), only partial CSI is required in our investigation, including the instantaneous CSI of the channel from a RIS to a base station and the statistical CSI of the channels from user terminals (UTs) to the RIS. We investigate the joint design of both the transmit covariance matrices of the UTs and the RIS phase shift matrix under the system global energy efficiency (GEE) maximization criterion. To maximize the GEE, we first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, we derive an asymptotic expression of the objective function with the aid of random matrix theory to reduce the computational cost. We further propose a lowcomplexity algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the GEE performance gains provided by RIS-assisted MIMO-MAC systems.\",\"PeriodicalId\":106560,\"journal\":{\"name\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC40277.2020.9149355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了可重构智能曲面(RISs)在辅助多用户多输入多输出多接入信道(MIMO-MAC)系统中的应用。与大多数现有的RIS辅助系统的工作相反,我们的研究只需要部分CSI,包括从RIS到基站的通道的瞬时CSI和从用户终端(ut)到RIS的通道的统计CSI。在系统全局能源效率(GEE)最大化准则下,研究了ut的传输协方差矩阵和RIS相移矩阵的联合设计。为了最大化极限值,我们首先得到ut的最优传输协方差矩阵的特征向量的闭型解。然后,利用随机矩阵理论推导出目标函数的渐近表达式,以减少计算量。我们进一步提出了一种低复杂度的算法,利用交替优化、分数规划和顺序优化的方法来解决具有保证收敛性的极值问题。数值结果证实了所提出方法的有效性以及ris辅助MIMO-MAC系统提供的GEE性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable Intelligent Surfaces Assisted MIMO-MAC with Partial CSI
This paper considers the application of reconfigurable intelligent surfaces (RISs) to assist multiuser multipleinput multiple-output multiple access channel (MIMO-MAC) systems. In contrast to most existing works on RIS-assisted systems assuming the availability of full channel state information (CSI), only partial CSI is required in our investigation, including the instantaneous CSI of the channel from a RIS to a base station and the statistical CSI of the channels from user terminals (UTs) to the RIS. We investigate the joint design of both the transmit covariance matrices of the UTs and the RIS phase shift matrix under the system global energy efficiency (GEE) maximization criterion. To maximize the GEE, we first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, we derive an asymptotic expression of the objective function with the aid of random matrix theory to reduce the computational cost. We further propose a lowcomplexity algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the GEE performance gains provided by RIS-assisted MIMO-MAC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信