更好的关键词提取

Shihua Xu, Fang Kong
{"title":"更好的关键词提取","authors":"Shihua Xu, Fang Kong","doi":"10.1109/IALP.2015.7451561","DOIUrl":null,"url":null,"abstract":"Automatic keyword extraction is the task to identify a small set of keywords from a given document that can describe the meaning of the document. It plays an important role in information retrieval. In this paper, a clustering-based approach to do this task is proposed. And the impacts of keyword length, the window size of centroid on the performance of AKE system are discussed. Then by introducing keyword length constraint and extending the number of centroid of every cluster, the performance of our AKE system is improved by 7.5% in F-score.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward better keywords extraction\",\"authors\":\"Shihua Xu, Fang Kong\",\"doi\":\"10.1109/IALP.2015.7451561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic keyword extraction is the task to identify a small set of keywords from a given document that can describe the meaning of the document. It plays an important role in information retrieval. In this paper, a clustering-based approach to do this task is proposed. And the impacts of keyword length, the window size of centroid on the performance of AKE system are discussed. Then by introducing keyword length constraint and extending the number of centroid of every cluster, the performance of our AKE system is improved by 7.5% in F-score.\",\"PeriodicalId\":256927,\"journal\":{\"name\":\"2015 International Conference on Asian Language Processing (IALP)\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2015.7451561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动关键字提取是指从给定文档中识别一小组可以描述文档含义的关键字的任务。它在信息检索中起着重要的作用。本文提出了一种基于聚类的方法来完成这一任务。讨论了关键词长度、质心窗口大小对AKE系统性能的影响。然后通过引入关键字长度约束和扩展每个聚类的质心个数,使我们的AKE系统的F-score性能提高了7.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward better keywords extraction
Automatic keyword extraction is the task to identify a small set of keywords from a given document that can describe the meaning of the document. It plays an important role in information retrieval. In this paper, a clustering-based approach to do this task is proposed. And the impacts of keyword length, the window size of centroid on the performance of AKE system are discussed. Then by introducing keyword length constraint and extending the number of centroid of every cluster, the performance of our AKE system is improved by 7.5% in F-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信