连续时间系统的最优逼近

M. Bettayeb, L. Silverman, M. Safonov
{"title":"连续时间系统的最优逼近","authors":"M. Bettayeb, L. Silverman, M. Safonov","doi":"10.1109/CDC.1980.271777","DOIUrl":null,"url":null,"abstract":"In [1], the problem of optimally approximating a discrete-time system by a lower-order system was solved based on a remarkable theoretical result of Adamjan, Arov and Krein [2]. In this paper, we derive similar reduced models for continuous-time systems using a new approach based on the system structure of the finite dimensional model. Concrete algorithms are developed for finding approximations of any specified order. These approximations are optimal in a well defined sense.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Optimal approximation of continuous-time systems\",\"authors\":\"M. Bettayeb, L. Silverman, M. Safonov\",\"doi\":\"10.1109/CDC.1980.271777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [1], the problem of optimally approximating a discrete-time system by a lower-order system was solved based on a remarkable theoretical result of Adamjan, Arov and Krein [2]. In this paper, we derive similar reduced models for continuous-time systems using a new approach based on the system structure of the finite dimensional model. Concrete algorithms are developed for finding approximations of any specified order. These approximations are optimal in a well defined sense.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

在[1]中,基于Adamjan, Arov和Krein[2]的显著理论结果,解决了用低阶系统最优逼近离散时间系统的问题。本文基于有限维模型的系统结构,采用一种新的方法导出了连续时间系统的类似简化模型。具体的算法被开发用于寻找任何指定阶的近似。这些近似在定义良好的意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal approximation of continuous-time systems
In [1], the problem of optimally approximating a discrete-time system by a lower-order system was solved based on a remarkable theoretical result of Adamjan, Arov and Krein [2]. In this paper, we derive similar reduced models for continuous-time systems using a new approach based on the system structure of the finite dimensional model. Concrete algorithms are developed for finding approximations of any specified order. These approximations are optimal in a well defined sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信