{"title":"静态无功补偿器(SVC)对电力系统损耗的影响","authors":"Katarina Kecojević, Ognjen Lukačević, M. Ćalasan","doi":"10.2478/bhee-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to investigate the effect of the location of the SVC installation on the amount of power losses in the power system. The IEEE modified system with 3 wind turbines and 24 nodes was used as the test system. For the purpose of discovering the optimal location of the SVC device, GAMS programme was used. Comparing the results for losses before and after setting SVC to the optimum position in order to minimize losses, it was concluded that the position and power of the SVC device greatly influence the amount of losses in the system.","PeriodicalId":236883,"journal":{"name":"B&H Electrical Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Static Var Compensator (SVC) Devices on Power System Losses\",\"authors\":\"Katarina Kecojević, Ognjen Lukačević, M. Ćalasan\",\"doi\":\"10.2478/bhee-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to investigate the effect of the location of the SVC installation on the amount of power losses in the power system. The IEEE modified system with 3 wind turbines and 24 nodes was used as the test system. For the purpose of discovering the optimal location of the SVC device, GAMS programme was used. Comparing the results for losses before and after setting SVC to the optimum position in order to minimize losses, it was concluded that the position and power of the SVC device greatly influence the amount of losses in the system.\",\"PeriodicalId\":236883,\"journal\":{\"name\":\"B&H Electrical Engineering\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"B&H Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bhee-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"B&H Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhee-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Static Var Compensator (SVC) Devices on Power System Losses
Abstract The aim of this paper is to investigate the effect of the location of the SVC installation on the amount of power losses in the power system. The IEEE modified system with 3 wind turbines and 24 nodes was used as the test system. For the purpose of discovering the optimal location of the SVC device, GAMS programme was used. Comparing the results for losses before and after setting SVC to the optimum position in order to minimize losses, it was concluded that the position and power of the SVC device greatly influence the amount of losses in the system.