非均匀杂波环境下鲁棒自适应幅度迭代CFAR检测器

Renhong Xie, Liyan Wang, Zeyu Sun, Chenguang Bian, Ning Lv, Huan Wang, Peng Li, Yibin Rui
{"title":"非均匀杂波环境下鲁棒自适应幅度迭代CFAR检测器","authors":"Renhong Xie, Liyan Wang, Zeyu Sun, Chenguang Bian, Ning Lv, Huan Wang, Peng Li, Yibin Rui","doi":"10.1117/12.2557649","DOIUrl":null,"url":null,"abstract":"Constant false alarm rate (CFAR) detectors are widely used in modern radar system to declare the presence of targets. Due to the serious masking effects under the multiple targets situation and the clutter edge, the detection probability of CFAR detectors decrease sharply and the alarm rates increase significantly. To solve these problems, a robust adaptive amplitude iteration CFAR (AAI-CFAR) algorithm is proposed in this paper and obtains good performance. By combining the 2nd-order statistic, variability index, and the 4th-order statistic, kurtosis, a variable scaling factor is designed in the amplitude iteration to adapt different environment. Plenty of Monte Carlo simulations are applied to evaluate the performance of the proposed method under different clutter scenarios compared with existing CFAR detectors, which illustrate the superiority and robustness of AAI-CFAR.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust adaptive amplitude iteration CFAR detector in nonhomogeneous clutter environment\",\"authors\":\"Renhong Xie, Liyan Wang, Zeyu Sun, Chenguang Bian, Ning Lv, Huan Wang, Peng Li, Yibin Rui\",\"doi\":\"10.1117/12.2557649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constant false alarm rate (CFAR) detectors are widely used in modern radar system to declare the presence of targets. Due to the serious masking effects under the multiple targets situation and the clutter edge, the detection probability of CFAR detectors decrease sharply and the alarm rates increase significantly. To solve these problems, a robust adaptive amplitude iteration CFAR (AAI-CFAR) algorithm is proposed in this paper and obtains good performance. By combining the 2nd-order statistic, variability index, and the 4th-order statistic, kurtosis, a variable scaling factor is designed in the amplitude iteration to adapt different environment. Plenty of Monte Carlo simulations are applied to evaluate the performance of the proposed method under different clutter scenarios compared with existing CFAR detectors, which illustrate the superiority and robustness of AAI-CFAR.\",\"PeriodicalId\":415097,\"journal\":{\"name\":\"International Conference on Signal Processing Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2557649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2557649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恒虚警率(CFAR)探测器广泛应用于现代雷达系统中,用于探测目标的存在。由于多目标情况下严重的掩蔽效应和杂波边缘,CFAR检测器的检测概率急剧下降,报警率显著提高。针对这些问题,本文提出了一种鲁棒自适应幅度迭代CFAR (AAI-CFAR)算法,并取得了良好的性能。结合二阶统计量、可变性指数和四阶统计量峰度,在幅度迭代中设计了可变比例因子,以适应不同的环境。通过大量的蒙特卡罗仿真,对比现有CFAR检测器在不同杂波场景下的性能,验证了该方法的优越性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust adaptive amplitude iteration CFAR detector in nonhomogeneous clutter environment
Constant false alarm rate (CFAR) detectors are widely used in modern radar system to declare the presence of targets. Due to the serious masking effects under the multiple targets situation and the clutter edge, the detection probability of CFAR detectors decrease sharply and the alarm rates increase significantly. To solve these problems, a robust adaptive amplitude iteration CFAR (AAI-CFAR) algorithm is proposed in this paper and obtains good performance. By combining the 2nd-order statistic, variability index, and the 4th-order statistic, kurtosis, a variable scaling factor is designed in the amplitude iteration to adapt different environment. Plenty of Monte Carlo simulations are applied to evaluate the performance of the proposed method under different clutter scenarios compared with existing CFAR detectors, which illustrate the superiority and robustness of AAI-CFAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信