一类混沌系统的模糊自适应积分滑模同步

Chunzhi Yang, Yeguo Sun, Xiangyu Wei, Hui Lv
{"title":"一类混沌系统的模糊自适应积分滑模同步","authors":"Chunzhi Yang, Yeguo Sun, Xiangyu Wei, Hui Lv","doi":"10.1109/IAI50351.2020.9262181","DOIUrl":null,"url":null,"abstract":"Synchronization between two uncertain different chaotic systems is investigated by using adaptive fuzzy integral terminal sliding mode control. The proposed method can guarantee the convergence of the synchronization errors in some finite time. In addition, the singular problem which usually occurs in traditional sliding mode control, can also be avoided. Finally, some simulation studies are presented to show the effectiveness of the proposed method.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"111 1-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy adaptive integral sliding mode synchronization of a class of chaotic systems\",\"authors\":\"Chunzhi Yang, Yeguo Sun, Xiangyu Wei, Hui Lv\",\"doi\":\"10.1109/IAI50351.2020.9262181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronization between two uncertain different chaotic systems is investigated by using adaptive fuzzy integral terminal sliding mode control. The proposed method can guarantee the convergence of the synchronization errors in some finite time. In addition, the singular problem which usually occurs in traditional sliding mode control, can also be avoided. Finally, some simulation studies are presented to show the effectiveness of the proposed method.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"111 1-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用自适应模糊积分终端滑模控制方法研究了两个不确定混沌系统的同步问题。该方法能保证同步误差在有限时间内收敛。此外,还可以避免传统滑模控制中存在的奇异性问题。最后,通过仿真实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy adaptive integral sliding mode synchronization of a class of chaotic systems
Synchronization between two uncertain different chaotic systems is investigated by using adaptive fuzzy integral terminal sliding mode control. The proposed method can guarantee the convergence of the synchronization errors in some finite time. In addition, the singular problem which usually occurs in traditional sliding mode control, can also be avoided. Finally, some simulation studies are presented to show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信