{"title":"全函数矢量化中的收敛与标量化","authors":"F. Yue, J. Pang, Jiuzhen Jin, Chao Dai","doi":"10.1109/DASC.2013.120","DOIUrl":null,"url":null,"abstract":"When implementing SPMD programs on multi core platforms, whole function vectorization is an important optimization method. SPMD program has drawback that lots of instructions across multi threads are redundant which is sustained in vectorization. This paper proposes to alleviate this overhead by detecting scalar operations and extract them out in vectorization instructions. An algorithm is designed to deal with control flow and data flow synchronously in which convergent and invariance analysis is employed to statically identify convergent execution and invariant values or instructions. Our algorithm is effectively on implementing SPMD programs on multi core platforms. The experiments show our method could improve the execution efficiency by 13.3%.","PeriodicalId":179557,"journal":{"name":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence and Scalarization in Whole Function Vectorization\",\"authors\":\"F. Yue, J. Pang, Jiuzhen Jin, Chao Dai\",\"doi\":\"10.1109/DASC.2013.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When implementing SPMD programs on multi core platforms, whole function vectorization is an important optimization method. SPMD program has drawback that lots of instructions across multi threads are redundant which is sustained in vectorization. This paper proposes to alleviate this overhead by detecting scalar operations and extract them out in vectorization instructions. An algorithm is designed to deal with control flow and data flow synchronously in which convergent and invariance analysis is employed to statically identify convergent execution and invariant values or instructions. Our algorithm is effectively on implementing SPMD programs on multi core platforms. The experiments show our method could improve the execution efficiency by 13.3%.\",\"PeriodicalId\":179557,\"journal\":{\"name\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2013.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2013.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence and Scalarization in Whole Function Vectorization
When implementing SPMD programs on multi core platforms, whole function vectorization is an important optimization method. SPMD program has drawback that lots of instructions across multi threads are redundant which is sustained in vectorization. This paper proposes to alleviate this overhead by detecting scalar operations and extract them out in vectorization instructions. An algorithm is designed to deal with control flow and data flow synchronously in which convergent and invariance analysis is employed to statically identify convergent execution and invariant values or instructions. Our algorithm is effectively on implementing SPMD programs on multi core platforms. The experiments show our method could improve the execution efficiency by 13.3%.