利用递归神经网络对破坏性事件的可解释预测

A. Buczak, Benjamin D. Baugher, Adam J. Berlier, Kayla E. Scharfstein, Christine S. Martin
{"title":"利用递归神经网络对破坏性事件的可解释预测","authors":"A. Buczak, Benjamin D. Baugher, Adam J. Berlier, Kayla E. Scharfstein, Christine S. Martin","doi":"10.1109/ICAA52185.2022.00017","DOIUrl":null,"url":null,"abstract":"This paper describes the Crystal Cube method we developed for forecasting disruptive events around the world, specifically Irregular Leadership Change. Crystal Cube uses a Recurrent Neural Network (RNN) with Long-Short Term Memory (LSTM) units for forecasting. In this paper special emphasis is put on explanations of the network forecasts. We are using SHapley Additive exPlanations (SHAP) for individual forecast explanations and we are aggregating the explanations separately for True Positives, False Positives, True Negatives, and False Negatives. The method can be extended to Deep Reinforcement Learning models for self-driving cars or unmanned fighter jets.","PeriodicalId":206047,"journal":{"name":"2022 IEEE International Conference on Assured Autonomy (ICAA)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explainable Forecasts of Disruptive Events using Recurrent Neural Networks\",\"authors\":\"A. Buczak, Benjamin D. Baugher, Adam J. Berlier, Kayla E. Scharfstein, Christine S. Martin\",\"doi\":\"10.1109/ICAA52185.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Crystal Cube method we developed for forecasting disruptive events around the world, specifically Irregular Leadership Change. Crystal Cube uses a Recurrent Neural Network (RNN) with Long-Short Term Memory (LSTM) units for forecasting. In this paper special emphasis is put on explanations of the network forecasts. We are using SHapley Additive exPlanations (SHAP) for individual forecast explanations and we are aggregating the explanations separately for True Positives, False Positives, True Negatives, and False Negatives. The method can be extended to Deep Reinforcement Learning models for self-driving cars or unmanned fighter jets.\",\"PeriodicalId\":206047,\"journal\":{\"name\":\"2022 IEEE International Conference on Assured Autonomy (ICAA)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Assured Autonomy (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA52185.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Assured Autonomy (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA52185.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了我们开发的水晶立方方法,用于预测世界各地的破坏性事件,特别是不规则的领导层变化。Crystal Cube使用具有长短期记忆(LSTM)单元的递归神经网络(RNN)进行预测。本文着重阐述了网络预报的解释。我们对单个预测解释使用SHapley加性解释(SHAP),并分别对真阳性、假阳性、真阴性和假阴性的解释进行汇总。该方法可以扩展到自动驾驶汽车或无人战斗机的深度强化学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable Forecasts of Disruptive Events using Recurrent Neural Networks
This paper describes the Crystal Cube method we developed for forecasting disruptive events around the world, specifically Irregular Leadership Change. Crystal Cube uses a Recurrent Neural Network (RNN) with Long-Short Term Memory (LSTM) units for forecasting. In this paper special emphasis is put on explanations of the network forecasts. We are using SHapley Additive exPlanations (SHAP) for individual forecast explanations and we are aggregating the explanations separately for True Positives, False Positives, True Negatives, and False Negatives. The method can be extended to Deep Reinforcement Learning models for self-driving cars or unmanned fighter jets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信