递归实用程序和汤普森聚合器

R. Becker, J. P. Rincón-Zapatero
{"title":"递归实用程序和汤普森聚合器","authors":"R. Becker, J. P. Rincón-Zapatero","doi":"10.2139/ssrn.3007788","DOIUrl":null,"url":null,"abstract":"We reconsider the theory of Thompson aggregators proposed by Marinacci and Montrucchio. First, we prove a variant of their Recovery Theorem estabilishing the existence of extremal solutions to the Koopmans equation. Our approach applies the constructive Tarski-Kantorovich Fixed Point Theorem rather than the nonconstructive Tarski Theorem employed in their paper. We verify the Koopmans operator has the order continuity property that underlies invoking Tarski-Kantorovich. Then, under more restrictive conditions, we demonstrate there is a unique solution to the Koopmans equation. Our proof is based on &#965;<sub>0</sub>- concave operator techniques as first developed by Kransosels'kii. This differs from Marinacci and Montrucchio's proof as well as proofs given by Martins-da-Rocha and Vailakis.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Recursive Utiity and Thompson Aggregators\",\"authors\":\"R. Becker, J. P. Rincón-Zapatero\",\"doi\":\"10.2139/ssrn.3007788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reconsider the theory of Thompson aggregators proposed by Marinacci and Montrucchio. First, we prove a variant of their Recovery Theorem estabilishing the existence of extremal solutions to the Koopmans equation. Our approach applies the constructive Tarski-Kantorovich Fixed Point Theorem rather than the nonconstructive Tarski Theorem employed in their paper. We verify the Koopmans operator has the order continuity property that underlies invoking Tarski-Kantorovich. Then, under more restrictive conditions, we demonstrate there is a unique solution to the Koopmans equation. Our proof is based on &#965;<sub>0</sub>- concave operator techniques as first developed by Kransosels'kii. This differs from Marinacci and Montrucchio's proof as well as proofs given by Martins-da-Rocha and Vailakis.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3007788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3007788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们重新考虑了Marinacci和Montrucchio提出的汤普森聚合器理论。首先,我们证明了他们的恢复定理的一个变体,证明了库普曼方程的极值解的存在性。我们的方法采用建设性的Tarski- kantorovich不动点定理,而不是他们论文中使用的非建设性的Tarski定理。我们验证了Koopmans算子具有调用Tarski-Kantorovich的顺序连续性。然后,在更严格的条件下,我们证明了库普曼方程存在唯一解。我们的证明是基于Kransosels'kii首先开发的υ0-凹算子技术。这不同于Marinacci和Montrucchio的证明,也不同于Martins-da-Rocha和Vailakis的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Utiity and Thompson Aggregators
We reconsider the theory of Thompson aggregators proposed by Marinacci and Montrucchio. First, we prove a variant of their Recovery Theorem estabilishing the existence of extremal solutions to the Koopmans equation. Our approach applies the constructive Tarski-Kantorovich Fixed Point Theorem rather than the nonconstructive Tarski Theorem employed in their paper. We verify the Koopmans operator has the order continuity property that underlies invoking Tarski-Kantorovich. Then, under more restrictive conditions, we demonstrate there is a unique solution to the Koopmans equation. Our proof is based on υ0- concave operator techniques as first developed by Kransosels'kii. This differs from Marinacci and Montrucchio's proof as well as proofs given by Martins-da-Rocha and Vailakis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信