渐近刚性映射类群,1:编织汤普森群和霍顿群的有限性

A. Genevois, Anne Lonjou, Christian Urech
{"title":"渐近刚性映射类群,1:编织汤普森群和霍顿群的有限性","authors":"A. Genevois, Anne Lonjou, Christian Urech","doi":"10.2140/gt.2022.26.1385","DOIUrl":null,"url":null,"abstract":"This article is dedicated to the study of asymptotically rigid mapping class groups of infinitely-punctured surfaces obtained by thickening planar trees. Such groups include the braided Ptolemy-Thompson groups $T^\\sharp,T^\\ast$ introduced by Funar and Kapoudjian, and the braided Houghton groups $\\mathrm{br}H_n$ introduced by Degenhardt. We present an elementary construction of a contractible cube complex, on which these groups act with cube-stabilisers isomorphic to finite extensions of braid groups. As an application, we prove Funar-Kapoudjian's and Degenhardt's conjectures by showing that $T^\\sharp,T^\\ast$ are of type $F_\\infty$ and that $\\mathrm{br}H_n$ is of type $F_{n-1}$ but not of type $F_n$.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Asymptotically rigid mapping class\\ngroups, I : Finiteness properties of braided Thompson’s and Houghton’s\\ngroups\",\"authors\":\"A. Genevois, Anne Lonjou, Christian Urech\",\"doi\":\"10.2140/gt.2022.26.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is dedicated to the study of asymptotically rigid mapping class groups of infinitely-punctured surfaces obtained by thickening planar trees. Such groups include the braided Ptolemy-Thompson groups $T^\\\\sharp,T^\\\\ast$ introduced by Funar and Kapoudjian, and the braided Houghton groups $\\\\mathrm{br}H_n$ introduced by Degenhardt. We present an elementary construction of a contractible cube complex, on which these groups act with cube-stabilisers isomorphic to finite extensions of braid groups. As an application, we prove Funar-Kapoudjian's and Degenhardt's conjectures by showing that $T^\\\\sharp,T^\\\\ast$ are of type $F_\\\\infty$ and that $\\\\mathrm{br}H_n$ is of type $F_{n-1}$ but not of type $F_n$.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文研究了由平面树加厚得到的无限穿孔曲面的渐近刚性映射类群。这些群包括由Funar和Kapoudjian介绍的编织托勒密-汤普森群$T^\sharp,T^\ast$,以及由Degenhardt介绍的编织霍顿群$\mathrm{br}H_n$。本文给出了一个可收缩立方复形的初等构造,这些群与与辫群有限扩展同构的立方稳定子作用于此复形上。作为应用,我们证明了Funar-Kapoudjian和Degenhardt的猜想,证明了$T^\sharp,T^\ast$的类型是$F_\infty$, $\mathrm{br}H_n$的类型是$F_{n-1}$而不是$F_n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically rigid mapping class groups, I : Finiteness properties of braided Thompson’s and Houghton’s groups
This article is dedicated to the study of asymptotically rigid mapping class groups of infinitely-punctured surfaces obtained by thickening planar trees. Such groups include the braided Ptolemy-Thompson groups $T^\sharp,T^\ast$ introduced by Funar and Kapoudjian, and the braided Houghton groups $\mathrm{br}H_n$ introduced by Degenhardt. We present an elementary construction of a contractible cube complex, on which these groups act with cube-stabilisers isomorphic to finite extensions of braid groups. As an application, we prove Funar-Kapoudjian's and Degenhardt's conjectures by showing that $T^\sharp,T^\ast$ are of type $F_\infty$ and that $\mathrm{br}H_n$ is of type $F_{n-1}$ but not of type $F_n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信