实现建筑聚合管道的智能查询

K. Alexakis, Panagiotis Kapsalis, Z. Mylona, Georgios Kormpakis, Evangelos Karakolis, Christos Ntanos, D. Askounis
{"title":"实现建筑聚合管道的智能查询","authors":"K. Alexakis, Panagiotis Kapsalis, Z. Mylona, Georgios Kormpakis, Evangelos Karakolis, Christos Ntanos, D. Askounis","doi":"10.1109/IISA56318.2022.9904384","DOIUrl":null,"url":null,"abstract":"Sensors, smart meters and IoT devices are key parts of the Building Information Systems. The amount of data generated from these sources is vast and the need for storage, fusion with secondary datasets (such as weather data) and aggregations has arisen in order to enhance building automation control activities. These data are stored on various data-sources, relational and non-relational, using different data formats. The combination of data coming from multiple data-sources constitutes a hard task, since each database uses different query language and structure. However, by combining all the available data-sources, it would be beneficial to reduce the volume of data during the training process. This paper presents an architecture that combines data from multiple data-sources (Databases, Object Storages, Building Information Systems) and create pipelines for aggregating the overall data.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Querying for Implementing Building Aggregation Pipelines\",\"authors\":\"K. Alexakis, Panagiotis Kapsalis, Z. Mylona, Georgios Kormpakis, Evangelos Karakolis, Christos Ntanos, D. Askounis\",\"doi\":\"10.1109/IISA56318.2022.9904384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors, smart meters and IoT devices are key parts of the Building Information Systems. The amount of data generated from these sources is vast and the need for storage, fusion with secondary datasets (such as weather data) and aggregations has arisen in order to enhance building automation control activities. These data are stored on various data-sources, relational and non-relational, using different data formats. The combination of data coming from multiple data-sources constitutes a hard task, since each database uses different query language and structure. However, by combining all the available data-sources, it would be beneficial to reduce the volume of data during the training process. This paper presents an architecture that combines data from multiple data-sources (Databases, Object Storages, Building Information Systems) and create pipelines for aggregating the overall data.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传感器、智能电表和物联网设备是建筑信息系统的关键部分。这些来源产生的数据量是巨大的,为了增强楼宇自动化控制活动,需要存储、与辅助数据集(如天气数据)融合和聚合。这些数据使用不同的数据格式存储在各种关系和非关系数据源上。来自多个数据源的数据组合构成了一项艰巨的任务,因为每个数据库使用不同的查询语言和结构。但是,通过结合所有可用的数据源,将有利于减少训练过程中的数据量。本文提出了一种将来自多个数据源(数据库、对象存储、建筑信息系统)的数据组合在一起的体系结构,并创建了用于聚合整体数据的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Querying for Implementing Building Aggregation Pipelines
Sensors, smart meters and IoT devices are key parts of the Building Information Systems. The amount of data generated from these sources is vast and the need for storage, fusion with secondary datasets (such as weather data) and aggregations has arisen in order to enhance building automation control activities. These data are stored on various data-sources, relational and non-relational, using different data formats. The combination of data coming from multiple data-sources constitutes a hard task, since each database uses different query language and structure. However, by combining all the available data-sources, it would be beneficial to reduce the volume of data during the training process. This paper presents an architecture that combines data from multiple data-sources (Databases, Object Storages, Building Information Systems) and create pipelines for aggregating the overall data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信