使用生物启发系统的分布式随时聚类

G. Folino, Agostino Forestiero, G. Spezzano
{"title":"使用生物启发系统的分布式随时聚类","authors":"G. Folino, Agostino Forestiero, G. Spezzano","doi":"10.1109/ICAIS.2009.28","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a biologically-inspired algorithm for clustering distributed data in a peer-to-peer network with a small world topology. The method proposed is based on a set of locally executable flocking algorithms that use a decentralized approach to discover clusters by an adaptive nearest-neighbor non-hierarchical approach and the execution, among the peers, of an iterative self-labeling strategy to generate global labels with which identify the clusters of all peers. We have measured the goodness of our flocking search strategy on performance in terms of accuracy and scalability. Furthermore, we evaluated the impact of small world topology in terms of reduction of iterations and messages exchanged to merge clusters.","PeriodicalId":161840,"journal":{"name":"2009 International Conference on Adaptive and Intelligent Systems","volume":"44 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Anytime Clustering Using Biologically Inspired Systems\",\"authors\":\"G. Folino, Agostino Forestiero, G. Spezzano\",\"doi\":\"10.1109/ICAIS.2009.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a biologically-inspired algorithm for clustering distributed data in a peer-to-peer network with a small world topology. The method proposed is based on a set of locally executable flocking algorithms that use a decentralized approach to discover clusters by an adaptive nearest-neighbor non-hierarchical approach and the execution, among the peers, of an iterative self-labeling strategy to generate global labels with which identify the clusters of all peers. We have measured the goodness of our flocking search strategy on performance in terms of accuracy and scalability. Furthermore, we evaluated the impact of small world topology in terms of reduction of iterations and messages exchanged to merge clusters.\",\"PeriodicalId\":161840,\"journal\":{\"name\":\"2009 International Conference on Adaptive and Intelligent Systems\",\"volume\":\"44 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Adaptive and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIS.2009.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Adaptive and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种受生物学启发的算法,用于在具有小世界拓扑的点对点网络中聚类分布式数据。该方法基于一组局部可执行的群集算法,该算法使用分散方法通过自适应最近邻非分层方法发现簇,并在对等体中执行迭代自标记策略来生成全局标签,用于识别所有对等体的簇。我们已经从准确性和可伸缩性方面衡量了群集搜索策略对性能的好处。此外,我们评估了小世界拓扑在减少迭代和交换消息以合并集群方面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Anytime Clustering Using Biologically Inspired Systems
In this paper, we propose a biologically-inspired algorithm for clustering distributed data in a peer-to-peer network with a small world topology. The method proposed is based on a set of locally executable flocking algorithms that use a decentralized approach to discover clusters by an adaptive nearest-neighbor non-hierarchical approach and the execution, among the peers, of an iterative self-labeling strategy to generate global labels with which identify the clusters of all peers. We have measured the goodness of our flocking search strategy on performance in terms of accuracy and scalability. Furthermore, we evaluated the impact of small world topology in terms of reduction of iterations and messages exchanged to merge clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信