多云环境下计算密集型工作流调度

Indrajeet Gupta, M. Kumar, P. K. Jana
{"title":"多云环境下计算密集型工作流调度","authors":"Indrajeet Gupta, M. Kumar, P. K. Jana","doi":"10.1109/ICACCI.2016.7732066","DOIUrl":null,"url":null,"abstract":"Workflow scheduling is recognized as well-known NP-complete problem in the perspective of cloud computing environment. Workflow applications always need high compute-intensive operations because of the presence of precedence-constrains. The scheduling objective is to map the workflow application to the VMs pool at available cloud datacenters such that the overall processing time (makespan) is to be minimized and average cloud utilization is maximized. In this paper, we propose a two phase workflow scheduling algorithm with a new priority scheme. It considers the ratio of average communication cost to the average computation cost of the task node as a part of prioritization process in the first phase. Prioritized tasks are mapped to suitable virtual machines in the second phase. Proposed algorithm is capable of scheduling large size workflows in heterogeneous multi-cloud environment. The proposed algorithm is simulated rigorously on standard scientific workflows and simulated results are compared with the existing dependent task scheduling algorithms as per the assumed cloud model. The results remarkably show that the proposed algorithm supercedes the existing algorithms in terms of makespan, speed-up, schedule length ratio and average cloud utilization.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Compute-intensive workflow scheduling in multi-cloud environment\",\"authors\":\"Indrajeet Gupta, M. Kumar, P. K. Jana\",\"doi\":\"10.1109/ICACCI.2016.7732066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workflow scheduling is recognized as well-known NP-complete problem in the perspective of cloud computing environment. Workflow applications always need high compute-intensive operations because of the presence of precedence-constrains. The scheduling objective is to map the workflow application to the VMs pool at available cloud datacenters such that the overall processing time (makespan) is to be minimized and average cloud utilization is maximized. In this paper, we propose a two phase workflow scheduling algorithm with a new priority scheme. It considers the ratio of average communication cost to the average computation cost of the task node as a part of prioritization process in the first phase. Prioritized tasks are mapped to suitable virtual machines in the second phase. Proposed algorithm is capable of scheduling large size workflows in heterogeneous multi-cloud environment. The proposed algorithm is simulated rigorously on standard scientific workflows and simulated results are compared with the existing dependent task scheduling algorithms as per the assumed cloud model. The results remarkably show that the proposed algorithm supercedes the existing algorithms in terms of makespan, speed-up, schedule length ratio and average cloud utilization.\",\"PeriodicalId\":371328,\"journal\":{\"name\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCI.2016.7732066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

工作流调度是云计算环境下公认的np完全问题。由于优先级约束的存在,工作流应用程序总是需要高计算密集型的操作。调度目标是将工作流应用程序映射到可用云数据中心的vm池,以便最小化总体处理时间(makespan)并最大化平均云利用率。本文提出了一种新的优先级方案的两阶段工作流调度算法。它将任务节点的平均通信成本与平均计算成本之比作为第一阶段优先级排序过程的一部分。在第二阶段,将优先任务映射到合适的虚拟机。该算法能够实现异构多云环境下的大流量工作流调度。该算法在标准科学工作流上进行了严格的仿真,并在假设的云模型下与现有的依赖任务调度算法进行了比较。结果表明,该算法在makespan、加速、调度长度比和平均云利用率等方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compute-intensive workflow scheduling in multi-cloud environment
Workflow scheduling is recognized as well-known NP-complete problem in the perspective of cloud computing environment. Workflow applications always need high compute-intensive operations because of the presence of precedence-constrains. The scheduling objective is to map the workflow application to the VMs pool at available cloud datacenters such that the overall processing time (makespan) is to be minimized and average cloud utilization is maximized. In this paper, we propose a two phase workflow scheduling algorithm with a new priority scheme. It considers the ratio of average communication cost to the average computation cost of the task node as a part of prioritization process in the first phase. Prioritized tasks are mapped to suitable virtual machines in the second phase. Proposed algorithm is capable of scheduling large size workflows in heterogeneous multi-cloud environment. The proposed algorithm is simulated rigorously on standard scientific workflows and simulated results are compared with the existing dependent task scheduling algorithms as per the assumed cloud model. The results remarkably show that the proposed algorithm supercedes the existing algorithms in terms of makespan, speed-up, schedule length ratio and average cloud utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信