SCAR U-Net:一种用于脑肿瘤分割的三维空间通道注意力网络

Mengxian Chi, Hong An, Xu Jin, Ke Wen, Zhenguo Nie
{"title":"SCAR U-Net:一种用于脑肿瘤分割的三维空间通道注意力网络","authors":"Mengxian Chi, Hong An, Xu Jin, Ke Wen, Zhenguo Nie","doi":"10.1145/3570773.3570826","DOIUrl":null,"url":null,"abstract":"Although surgical resection is the best option for treating gliomas, it might be difficult to minimize the harm done to healthy brain regions. As a result, segmenting brain tumors in medical image analysis has become essential. A number of segmentation investigations utilizing CNNs have lately demonstrated promising performance thanks to the advancement of image equipment and deep learning techniques. In this study, we propose the SCAR U-Net, an end-to-end 3D residual U-Net model incorporating attention mechanisms for the segmentation of brain tumors. The SCAR U-Net employs channel and spatial attention processes and has a 3D U-Net architecture with residual blocks. We evaluate the model on a subset of the BraTS 2021 dataset. And the model outperforms the baseline significantly by ET, TC, and WT in the test set. Finally, we use ablation tests to confirm the beneficial effects of the residual connections and the attention modules.","PeriodicalId":153475,"journal":{"name":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCAR U-Net: A 3D Spatial-Channel Attention ResU-Net for Brain Tumor Segmentation\",\"authors\":\"Mengxian Chi, Hong An, Xu Jin, Ke Wen, Zhenguo Nie\",\"doi\":\"10.1145/3570773.3570826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although surgical resection is the best option for treating gliomas, it might be difficult to minimize the harm done to healthy brain regions. As a result, segmenting brain tumors in medical image analysis has become essential. A number of segmentation investigations utilizing CNNs have lately demonstrated promising performance thanks to the advancement of image equipment and deep learning techniques. In this study, we propose the SCAR U-Net, an end-to-end 3D residual U-Net model incorporating attention mechanisms for the segmentation of brain tumors. The SCAR U-Net employs channel and spatial attention processes and has a 3D U-Net architecture with residual blocks. We evaluate the model on a subset of the BraTS 2021 dataset. And the model outperforms the baseline significantly by ET, TC, and WT in the test set. Finally, we use ablation tests to confirm the beneficial effects of the residual connections and the attention modules.\",\"PeriodicalId\":153475,\"journal\":{\"name\":\"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3570773.3570826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570773.3570826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然手术切除是治疗胶质瘤的最佳选择,但可能很难将对健康大脑区域的伤害降到最低。因此,在医学图像分析中,脑肿瘤的分割就变得至关重要。由于图像设备和深度学习技术的进步,利用cnn进行的一些分割研究最近显示出了有希望的性能。在这项研究中,我们提出了SCAR U-Net模型,这是一个端到端的3D残余U-Net模型,结合了注意机制,用于脑肿瘤的分割。SCAR U-Net采用通道和空间注意过程,并具有带有残留块的3D U-Net结构。我们在BraTS 2021数据集的一个子集上评估该模型。在测试集中,该模型通过ET、TC和WT显著优于基线。最后通过烧蚀实验验证了残余连接和注意模块的有益效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCAR U-Net: A 3D Spatial-Channel Attention ResU-Net for Brain Tumor Segmentation
Although surgical resection is the best option for treating gliomas, it might be difficult to minimize the harm done to healthy brain regions. As a result, segmenting brain tumors in medical image analysis has become essential. A number of segmentation investigations utilizing CNNs have lately demonstrated promising performance thanks to the advancement of image equipment and deep learning techniques. In this study, we propose the SCAR U-Net, an end-to-end 3D residual U-Net model incorporating attention mechanisms for the segmentation of brain tumors. The SCAR U-Net employs channel and spatial attention processes and has a 3D U-Net architecture with residual blocks. We evaluate the model on a subset of the BraTS 2021 dataset. And the model outperforms the baseline significantly by ET, TC, and WT in the test set. Finally, we use ablation tests to confirm the beneficial effects of the residual connections and the attention modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信