{"title":"无轴块矩阵反演","authors":"S. Watt","doi":"10.1109/SYNASC.2006.61","DOIUrl":null,"url":null,"abstract":"We present a pivot-free deterministic algorithm for the inversion of block matrices. The method is based on the Moore-Penrose inverse and is applicable over certain general classes of rings. This improves on previous methods that required at least one invertible on-diagonal block, and that otherwise required row- or column-based pivoting, disrupting the block structure. Our method is applicable to any invertible matrix and does not require any particular blocks to invertible. This is achieved at the cost of two additional specialized matrix multiplications and, in some cases, requires the inversion to be performed in an extended ring","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Pivot-Free Block Matrix Inversion\",\"authors\":\"S. Watt\",\"doi\":\"10.1109/SYNASC.2006.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a pivot-free deterministic algorithm for the inversion of block matrices. The method is based on the Moore-Penrose inverse and is applicable over certain general classes of rings. This improves on previous methods that required at least one invertible on-diagonal block, and that otherwise required row- or column-based pivoting, disrupting the block structure. Our method is applicable to any invertible matrix and does not require any particular blocks to invertible. This is achieved at the cost of two additional specialized matrix multiplications and, in some cases, requires the inversion to be performed in an extended ring\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a pivot-free deterministic algorithm for the inversion of block matrices. The method is based on the Moore-Penrose inverse and is applicable over certain general classes of rings. This improves on previous methods that required at least one invertible on-diagonal block, and that otherwise required row- or column-based pivoting, disrupting the block structure. Our method is applicable to any invertible matrix and does not require any particular blocks to invertible. This is achieved at the cost of two additional specialized matrix multiplications and, in some cases, requires the inversion to be performed in an extended ring