使用近似字符串连接的Web数据集成

Yingping Huang, G. Madey
{"title":"使用近似字符串连接的Web数据集成","authors":"Yingping Huang, G. Madey","doi":"10.1145/1013367.1013477","DOIUrl":null,"url":null,"abstract":"Web data integration is an important preprocessing step for web mining. It is highly likely that several records on the web whose textual representations differ may represent the same real world entity. These records are called approximate duplicates. Data integration seeks to identify such approximate duplicates and merge them into integrated records. Many existing data integration algorithms make use of approximate string join, which seeks to (approximately) find all pairs of strings whose distances are less than a certain threshold. In this paper, we propose a new mapping method to detect pairs of strings with similarity above a certain threshold. In our method, each string is first mapped to a point in a high dimensional grid space, then pairs of points whose distances are 1 are identified. We implement it using Oracle SQL and PL/SQL. Finally, we evaluate this method using real data sets. Experimental results suggest that our method is both accurate and efficient.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Web data integration using approximate string join\",\"authors\":\"Yingping Huang, G. Madey\",\"doi\":\"10.1145/1013367.1013477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web data integration is an important preprocessing step for web mining. It is highly likely that several records on the web whose textual representations differ may represent the same real world entity. These records are called approximate duplicates. Data integration seeks to identify such approximate duplicates and merge them into integrated records. Many existing data integration algorithms make use of approximate string join, which seeks to (approximately) find all pairs of strings whose distances are less than a certain threshold. In this paper, we propose a new mapping method to detect pairs of strings with similarity above a certain threshold. In our method, each string is first mapped to a point in a high dimensional grid space, then pairs of points whose distances are 1 are identified. We implement it using Oracle SQL and PL/SQL. Finally, we evaluate this method using real data sets. Experimental results suggest that our method is both accurate and efficient.\",\"PeriodicalId\":409891,\"journal\":{\"name\":\"WWW Alt. '04\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WWW Alt. '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013367.1013477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Web数据集成是Web挖掘的重要预处理步骤。很有可能,网络上文本表示不同的几个记录代表了同一个现实世界的实体。这些记录称为近似重复记录。数据整合旨在识别这种近似重复,并将其合并为综合记录。许多现有的数据集成算法使用近似字符串连接,它寻求(近似地)找到距离小于某个阈值的所有字符串对。在本文中,我们提出了一种新的映射方法来检测相似度超过一定阈值的字符串对。在我们的方法中,每个字符串首先映射到高维网格空间中的一个点,然后确定距离为1的点对。我们使用Oracle SQL和PL/SQL来实现。最后,用实际数据集对该方法进行了验证。实验结果表明,该方法既准确又高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web data integration using approximate string join
Web data integration is an important preprocessing step for web mining. It is highly likely that several records on the web whose textual representations differ may represent the same real world entity. These records are called approximate duplicates. Data integration seeks to identify such approximate duplicates and merge them into integrated records. Many existing data integration algorithms make use of approximate string join, which seeks to (approximately) find all pairs of strings whose distances are less than a certain threshold. In this paper, we propose a new mapping method to detect pairs of strings with similarity above a certain threshold. In our method, each string is first mapped to a point in a high dimensional grid space, then pairs of points whose distances are 1 are identified. We implement it using Oracle SQL and PL/SQL. Finally, we evaluate this method using real data sets. Experimental results suggest that our method is both accurate and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信