Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, J. Gaudiot
{"title":"硬件辅助中间件:加速垃圾收集操作","authors":"Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, J. Gaudiot","doi":"10.1109/ASAP.2010.5541011","DOIUrl":null,"url":null,"abstract":"Although the virtualization technology brings many benefits to cloud computing environments, as the virtual machines provide more features, the middleware layer has become bloated, introducing a high overhead. Our ultimate goal is to provide hardware-assisted solutions to improve the middleware performance in cloud computing environments. As a starting point, in this paper, we design, implement, and evaluate specialized hardware instructions to accelerate GC operations. We select GC because it is a common component in virtual machine designs and it incurs high performance and energy consumption overheads. We performed a profiling study on various GC algorithms to identify the GC performance hotspots, which contribute to more than 50% of the total GC execution time. By moving these hotspot functions into hardware, we managed to achieve an order of magnitude speedup.","PeriodicalId":175846,"journal":{"name":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hardware-assisted middleware: Acceleration of garbage collection operations\",\"authors\":\"Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, J. Gaudiot\",\"doi\":\"10.1109/ASAP.2010.5541011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the virtualization technology brings many benefits to cloud computing environments, as the virtual machines provide more features, the middleware layer has become bloated, introducing a high overhead. Our ultimate goal is to provide hardware-assisted solutions to improve the middleware performance in cloud computing environments. As a starting point, in this paper, we design, implement, and evaluate specialized hardware instructions to accelerate GC operations. We select GC because it is a common component in virtual machine designs and it incurs high performance and energy consumption overheads. We performed a profiling study on various GC algorithms to identify the GC performance hotspots, which contribute to more than 50% of the total GC execution time. By moving these hotspot functions into hardware, we managed to achieve an order of magnitude speedup.\",\"PeriodicalId\":175846,\"journal\":{\"name\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2010.5541011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2010.5541011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware-assisted middleware: Acceleration of garbage collection operations
Although the virtualization technology brings many benefits to cloud computing environments, as the virtual machines provide more features, the middleware layer has become bloated, introducing a high overhead. Our ultimate goal is to provide hardware-assisted solutions to improve the middleware performance in cloud computing environments. As a starting point, in this paper, we design, implement, and evaluate specialized hardware instructions to accelerate GC operations. We select GC because it is a common component in virtual machine designs and it incurs high performance and energy consumption overheads. We performed a profiling study on various GC algorithms to identify the GC performance hotspots, which contribute to more than 50% of the total GC execution time. By moving these hotspot functions into hardware, we managed to achieve an order of magnitude speedup.