温度预测中深度学习模型中注意机制影响的研究

Naba Krushna Sabat, U. C. Pati, S. Das
{"title":"温度预测中深度学习模型中注意机制影响的研究","authors":"Naba Krushna Sabat, U. C. Pati, S. Das","doi":"10.1109/ACCESS57397.2023.10200439","DOIUrl":null,"url":null,"abstract":"Prediction of the meteorological parameters, such as temperature, humidity, rainfall, wind speed, etc., is a crucial task for industrial and agricultural applications. In recent years deep learning techniques have become more popular for predicting the time series weather data because of their accuracy and promising result. However, adding an attention mechanism in the deep learning model provides more long-term prediction accuracy. This article investigates the potential of attention-based deep learning models for improving the forecasting accuracy of the meteorological parameter temperature. The attention mechanism helps in improving the forecasting accuracy, which is evident from the experimental result analysis in terms of key performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).","PeriodicalId":345351,"journal":{"name":"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Impact of Attention Mechanism in Deep Learning Models for Temperature Prediction\",\"authors\":\"Naba Krushna Sabat, U. C. Pati, S. Das\",\"doi\":\"10.1109/ACCESS57397.2023.10200439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of the meteorological parameters, such as temperature, humidity, rainfall, wind speed, etc., is a crucial task for industrial and agricultural applications. In recent years deep learning techniques have become more popular for predicting the time series weather data because of their accuracy and promising result. However, adding an attention mechanism in the deep learning model provides more long-term prediction accuracy. This article investigates the potential of attention-based deep learning models for improving the forecasting accuracy of the meteorological parameter temperature. The attention mechanism helps in improving the forecasting accuracy, which is evident from the experimental result analysis in terms of key performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).\",\"PeriodicalId\":345351,\"journal\":{\"name\":\"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCESS57397.2023.10200439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCESS57397.2023.10200439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气象参数的预测,如温度、湿度、降雨量、风速等,是工农业应用的关键任务。近年来,深度学习技术因其准确性和良好的预测结果而在时间序列天气数据预测中越来越受欢迎。然而,在深度学习模型中添加注意机制可以提供更高的长期预测准确性。本文研究了基于注意力的深度学习模型在提高气象参数温度预报精度方面的潜力。从平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)等关键性能指标的实验结果分析中可以看出,注意机制有助于提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on the Impact of Attention Mechanism in Deep Learning Models for Temperature Prediction
Prediction of the meteorological parameters, such as temperature, humidity, rainfall, wind speed, etc., is a crucial task for industrial and agricultural applications. In recent years deep learning techniques have become more popular for predicting the time series weather data because of their accuracy and promising result. However, adding an attention mechanism in the deep learning model provides more long-term prediction accuracy. This article investigates the potential of attention-based deep learning models for improving the forecasting accuracy of the meteorological parameter temperature. The attention mechanism helps in improving the forecasting accuracy, which is evident from the experimental result analysis in terms of key performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信