{"title":"夹紧基尔霍夫板障碍问题的加性Schwarz预调节器","authors":"S. C. Brenner, C. B. Davis, L. Sung","doi":"10.1553/etna_vol49s274","DOIUrl":null,"url":null,"abstract":"When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method, the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we develop and analyze additive Schwarz preconditioners for the systems that appear in each iteration of the primal-dual active set algorithm. Numerical results that corroborate the theoretical estimates are also presented.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Additive Schwarz preconditioners for the obstacle problem of clamped Kirchhoff plates\",\"authors\":\"S. C. Brenner, C. B. Davis, L. Sung\",\"doi\":\"10.1553/etna_vol49s274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method, the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we develop and analyze additive Schwarz preconditioners for the systems that appear in each iteration of the primal-dual active set algorithm. Numerical results that corroborate the theoretical estimates are also presented.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol49s274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol49s274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additive Schwarz preconditioners for the obstacle problem of clamped Kirchhoff plates
When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method, the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we develop and analyze additive Schwarz preconditioners for the systems that appear in each iteration of the primal-dual active set algorithm. Numerical results that corroborate the theoretical estimates are also presented.