利用机器学习方法建立主权违约预警系统

Q1 Economics, Econometrics and Finance
Anastasios Petropoulos, Vasilis Siakoulis, Evangelos Stavroulakis
{"title":"利用机器学习方法建立主权违约预警系统","authors":"Anastasios Petropoulos,&nbsp;Vasilis Siakoulis,&nbsp;Evangelos Stavroulakis","doi":"10.1002/isaf.1516","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, we address the topic of credit risk stemming from central governments from a technical point of view. First, we explore various econometric and machine learning techniques to build an enhanced sovereign rating system that effectively differentiates the risk of default among countries. Our empirical results indicate that the machine learning method of XGBOOST has a superior out-of-sample and out-of-time predictive performance. Then, we use the models developed to calibrate a sovereign rating system and provide useful insights into the set-up of a parsimonious early warning system. Our results provide a more concise view of the most robust method for classifying countries’ default risk with significant regulatory implications, given that the efficient assessment of sovereign debt is crucial for effective proactive risk measurement.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 2","pages":"118-129"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards an early warning system for sovereign defaults leveraging on machine learning methodologies\",\"authors\":\"Anastasios Petropoulos,&nbsp;Vasilis Siakoulis,&nbsp;Evangelos Stavroulakis\",\"doi\":\"10.1002/isaf.1516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this study, we address the topic of credit risk stemming from central governments from a technical point of view. First, we explore various econometric and machine learning techniques to build an enhanced sovereign rating system that effectively differentiates the risk of default among countries. Our empirical results indicate that the machine learning method of XGBOOST has a superior out-of-sample and out-of-time predictive performance. Then, we use the models developed to calibrate a sovereign rating system and provide useful insights into the set-up of a parsimonious early warning system. Our results provide a more concise view of the most robust method for classifying countries’ default risk with significant regulatory implications, given that the efficient assessment of sovereign debt is crucial for effective proactive risk measurement.</p>\\n </div>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"29 2\",\"pages\":\"118-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们从技术的角度来探讨中央政府的信用风险问题。首先,我们探索了各种计量经济学和机器学习技术,以建立一个增强的主权评级系统,有效区分各国之间的违约风险。我们的实证结果表明,XGBOOST的机器学习方法具有优异的样本外和时间外预测性能。然后,我们使用开发的模型来校准主权评级系统,并为建立节俭的预警系统提供有用的见解。鉴于对主权债务的有效评估对于有效的主动风险测量至关重要,我们的研究结果提供了一种更简洁的观点,即对具有重大监管意义的国家违约风险进行分类的最稳健方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an early warning system for sovereign defaults leveraging on machine learning methodologies

In this study, we address the topic of credit risk stemming from central governments from a technical point of view. First, we explore various econometric and machine learning techniques to build an enhanced sovereign rating system that effectively differentiates the risk of default among countries. Our empirical results indicate that the machine learning method of XGBOOST has a superior out-of-sample and out-of-time predictive performance. Then, we use the models developed to calibrate a sovereign rating system and provide useful insights into the set-up of a parsimonious early warning system. Our results provide a more concise view of the most robust method for classifying countries’ default risk with significant regulatory implications, given that the efficient assessment of sovereign debt is crucial for effective proactive risk measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信