{"title":"网络设备安全算法的运行时选择","authors":"A. Taddeo, A. Ferrante","doi":"10.1145/1641944.1641963","DOIUrl":null,"url":null,"abstract":"One of the most important challenges that need to be currently faced in securing resource-constrained embedded systems is optimizing the trade-off between resources used (energy consumption and computational capabilities required) and security requirements for cryptographic algorithms: any adopted security solutions should guarantee an adequate level of protection, yet respecting constraints on computational resources and consumed power. In this paper a generic, efficient, and energy-aware mechanism to determine a correct trade off between security requirements and resources consumed is proposed. The solution proposed relies on Analytic Hierarchy Process (AHP) to define priorities among different requirements and to compare different security solutions. A knapsack problem is formulated to select the most relevant algorithms based on their utility and on available resources.","PeriodicalId":369459,"journal":{"name":"Q2S and Security for Wireless and Mobile Networks","volume":"17 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Run-time selection of security algorithms for networked devices\",\"authors\":\"A. Taddeo, A. Ferrante\",\"doi\":\"10.1145/1641944.1641963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important challenges that need to be currently faced in securing resource-constrained embedded systems is optimizing the trade-off between resources used (energy consumption and computational capabilities required) and security requirements for cryptographic algorithms: any adopted security solutions should guarantee an adequate level of protection, yet respecting constraints on computational resources and consumed power. In this paper a generic, efficient, and energy-aware mechanism to determine a correct trade off between security requirements and resources consumed is proposed. The solution proposed relies on Analytic Hierarchy Process (AHP) to define priorities among different requirements and to compare different security solutions. A knapsack problem is formulated to select the most relevant algorithms based on their utility and on available resources.\",\"PeriodicalId\":369459,\"journal\":{\"name\":\"Q2S and Security for Wireless and Mobile Networks\",\"volume\":\"17 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Q2S and Security for Wireless and Mobile Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1641944.1641963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q2S and Security for Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1641944.1641963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Run-time selection of security algorithms for networked devices
One of the most important challenges that need to be currently faced in securing resource-constrained embedded systems is optimizing the trade-off between resources used (energy consumption and computational capabilities required) and security requirements for cryptographic algorithms: any adopted security solutions should guarantee an adequate level of protection, yet respecting constraints on computational resources and consumed power. In this paper a generic, efficient, and energy-aware mechanism to determine a correct trade off between security requirements and resources consumed is proposed. The solution proposed relies on Analytic Hierarchy Process (AHP) to define priorities among different requirements and to compare different security solutions. A knapsack problem is formulated to select the most relevant algorithms based on their utility and on available resources.